2,350 research outputs found
The Isotopic Composition of Strontium in Fossils from the Kendrick Shale, Kentucky
Author Institution: Department of Geology and Mineralogy, The Ohio State UniversityNine analyses of the isotopic composition of strontium in the carbonate shells of marine fossils from the Kendrick Shale (Lower Pennsylvanian) of Kentucky indicate an average 87Sr/86Sr ratio of 0.7086^O.OOOSS at the 95 percent confidence limit. This value is in satisfactory agreement with previous measurements by Peterman et al. (1970) and confirms that strontium in the oceans during Early Pennsylvanian time was anomalously enriched in radiogenic 87Sr, compared to that in earlier and later periods. The isotopic composition of strontium in skeletal clacium carbonate of cephalopods, gastropods, and brachiopods from the Kendrick Shale appears to be the same in spite of the different feeding habits of these animals
The Inertio-Elastic Planar Entry Flow of Low-Viscosity Elastic Fluids in Micro-fabricated Geometries
The non-Newtonian flow of dilute aqueous polyethylene oxide (PEO) solutions through
microfabricated planar abrupt contraction-expansions is investigated. The contraction
geometries are fabricated from a high-resolution chrome mask and cross-linked PDMS
gels using the tools of soft-lithography. The small length scales and high deformation
rates in the contraction throat lead to significant extensional flow effects even with dilute polymer solutions having time constants on the order of milliseconds. The dimensionless
extra pressure drop across the contraction increases by more than 200% and is
accompanied by significant upstream vortex growth. Streak photography and videomicroscopy
using epifluorescent particles shows that the flow ultimately becomes
unstable and three-dimensional. The moderate Reynolds numbers (0.03 ⤠Re ⤠44)
associated with these high Deborah number (0 ⤠De ⤠600) microfluidic flows results in
the exploration of new regions of the Re-De parameter space in which the effects of both
elasticity and inertia can be observed. Understanding such interactions will be
increasingly important in microfluidic applications involving complex fluids and can best
be interpreted in terms of the elasticity number, El = De/Re, which is independent of the
flow kinematics and depends only on the fluid rheology and the characteristic size of the
device.NS
Comparison of Robot-Assisted Nephrectomy with Laparoscopic and Hand-Assisted Laparoscopic Nephrectomy
Early experience with robotic assistance for radical and simple nephrectomy offers no significant advantage over traditional laparoscopic or hand-assisted approaches
Magnetic moments of W 5d in Ca2CrWO6 and Sr2CrWO6 double perovskites
We have investigated the magnetic moment of the W ion in the ferrimagnetic
double perovskites Sr2CrWO6 and Ca2CrWO6 by X-ray magnetic circular dichroism
(XMCD) at the W L(2,3) edges. In both compounds a finite negative spin and
positive orbital magnetic moment was detected. The experimental results are in
good agreement with band-structure calculations for (Sr/Ca)2CrWO6 using the
full-potential linear muffin-tin orbital method. It is remarkable, that the
magnetic ordering temperature, TC, is correlated with the magnetic moment at
the 'non-magnetic' W atom.Comment: accepted for publicatio
Chaotic flow and efficient mixing in a micro-channel with a polymer solution
Microscopic flows are almost universally linear, laminar and stationary
because Reynolds number, , is usually very small. That impedes mixing in
micro-fluidic devices, which sometimes limits their performance. Here we show
that truly chaotic flow can be generated in a smooth micro-channel of a uniform
width at arbitrarily low , if a small amount of flexible polymers is added
to the working liquid. The chaotic flow regime is characterized by randomly
fluctuating three-dimensional velocity field and significant growth of the flow
resistance. Although the size of the polymer molecules extended in the flow may
become comparable with the micro-channel width, the flow behavior is fully
compatible with that in a table-top channel in the regime of elastic
turbulence. The chaotic flow leads to quite efficient mixing, which is almost
diffusion independent. For macromolecules, mixing time in this microscopic flow
can be three to four orders of magnitude shorter than due to molecular
diffusion.Comment: 8 pages,7 figure
Systems pharmacology approach for prediction of pulmonary and systemic pharmacokinetics and receptor occupancy of inhaled drugs
Pulmonary drug disposition after inhalation is complex involving mechanisms, such as regional drug deposition, dissolution, and mucociliary clearance. This study aimed to develop a systems pharmacology approach to mechanistically describe lung disposition in rats and thereby provide an integrated understanding of the system. When drug- and formulation-specific properties for the poorly soluble drug fluticasone propionate were fed into the model, it proved predictive of the pharmacokinetics and receptor occupancy after intravenous administration and nose-only inhalation. As the model clearly distinguishes among drug-specific, formulation-specific, and system-specific properties, it was possible to identify key determinants of pulmonary selectivity of receptor occupancy of inhaled drugs: slow particle dissolution and slow drug-receptor dissociation. Hence, it enables assessment of factors for lung targeting, including molecular properties, formulation, as well as the physiology of the animal species, thereby providing a general framework for rational drug design and facilitated translation of lung targeting from animal to man
CN and HCN in Dense Interstellar Clouds
We present a theoretical investigation of CN and HCN molecule formation in
dense interstellar clouds. We study the gas-phase CN and HCN production
efficiencies from the outer photon-dominated regions (PDRs) into the opaque
cosmic-ray dominated cores. We calculate the equilibrium densities of CN and
HCN, and of the associated species C+, C, and CO, as functions of the
far-ultraviolet (FUV) optical depth. We consider isothermal gas at 50 K, with
hydrogen particle densities from 10^2 to 10^6 cm^-3. We study clouds that are
exposed to FUV fields with intensities 20 to 2*10^5 times the mean interstellar
FUV intensity. We assume cosmic-ray H2 ionization rates ranging from 5*10^-17
s^-1, to an enhanced value of 5*10^-16 s^-1. We also examine the sensitivity of
the density profiles to the gas-phase sulfur abundance.Comment: Accepted for publication in ApJ, 33 pages, 8 figure
Penalty finite element approximations of the stationary power- law Stokes problem
Finite element approximations of the stationary power-law Stokes problem using penalty
formulation are considered. A priori error estimates under appropriate smoothness assumptions on the
solutions are established without assuming a discrete version of the BB condition. Numerical solutions
are presented by implementing a nonlinear conjugate gradient metho
A Parallel Randomized Clinical Trial Examining the Return of Urinary Continence After Robot- Assisted Radical Prostatectomy with or without a Small Intestinal Submucosa Bladder Neck Sling
Purpose
Urinary continence is a driver of quality of life after radical prostatectomy. In this study we evaluated the impact of a biological bladder neck sling on the return of urinary continence after robot-assisted radical prostatectomy.
Materials and Methods
This study compared early continence in patients undergoing robot-assisted radical prostatectomy with a sling and without a sling in a 2-group, 1:1, parallel, randomized controlled trial. Patients were blinded to group assignment. The primary outcome was defined as urinary continence (0 to 1 pad per day) at 1 month postoperatively. Inclusion criteria were organ confined prostate cancer and a prostate specific antigen less than 15 ng/ml. Exclusion criteria were any prior surgery on the prostate, a history of neurogenic bladder and history of pelvic radiation. A chi-squared test was used for the primary outcome.
Results
A total of 147 patients were randomized (control 74, sling 73) and 92% were available for primary end point analysis at 1 month. There were no significant differences in baseline or perioperative data except that operating room time was 20.1 minutes longer for the sling group (p=0.04). The continence rate was similar between the control and sling groups at 1 month (47.1% vs 55.2%, p=0.34) and 12 months (86.7% vs 94.5%, p=0.15), respectively. Adverse events were similar between the control and sling groups (10.8% vs 13.7%, p=0.59).
Conclusions
The application of an absorbable urethral sling at robot-assisted radical prostatectomy was well tolerated with no increase in obstructive symptoms in this randomized trial. However, the sling failed to show a significant improvement in continence
On the Normalization of the Neutrino-Deuteron Cross Section
As is well-known, comparison of the solar neutrino fluxes measured in
SuperKamiokande (SK) by and in the Sudbury Neutrino
Observatory (SNO) by can provide a ``smoking gun''
signature for neutrino oscillations as the solution to the solar neutrino
puzzle. This occurs because SK has some sensitivity to all active neutrino
flavors whereas SNO can isolate electron neutrinos. This comparison depends
crucially on the normalization and uncertainty of the theoretical
charged-current neutrino-deuteron cross section. We address a number of effects
which are significant enough to change the interpretation of the SK--SNO
comparison.Comment: 4 pages, 1 figure, submitted to PR
- …