286 research outputs found

    Rotational modulation of the chromospheric activity in the young solar-type star, X-1 Orionis

    Get PDF
    The IUE satellite was used to observe one of the youngest G stars (GO V) for which Duncan (1981) derives an age of 6 x 10 to the 8th power years from the Li abundance. Rotational modulation was looked for in the emission flux in the chromospheric and transition region lines of this star. Variations in the Ca 11 K-lines profile were studied with the CHF telescope at Mauna Kea. Results show that the same modulation of the emission flux of Ca 11 due to stellar rotation is present in the transition region feature of C IV and probably of He II. For other UV lines the modulation is not apparent, due to a more complex surface distribution of the active areas or supergranulation network, or a shorter lifetime of the conditions which give rise to these features, or to the uncertainities in the measured line strengths. The Mg II emission flux is constant to within + or - 3.4% implying a rather uniform distribution of Mg II emission areas. The Ca II emission not only shows a measurable variation in intensity but also variations in detailed line profile shape when observed at high resolution

    IUE observations of the chromospheric activity-age relation in young solar-type stars

    Get PDF
    Ultraviolet data obtained with the IUE spacecraft are presented for a dozen solar-type stars in the field. The stars are of spectral type F6 V - G1 V; on the basis of their high Li content, they range in age from 0.1 to 2.8 Gyr. The evolution of transition regions and chromospheric emission with stellar age is studied along with the surface distribution of magnetically active regions as revealed by rotational modulation of UV emission line fluxes

    Beryllium and Alpha-Element Abundances in a Large Sample of Metal-Poor Stars

    Full text link
    The light elements, Li, Be, and B, provide tracers for many aspects of astronomy including stellar structure, Galactic evolution, and cosmology. We have taken spectra of Be in 117 metal-poor stars ranging in metallicity from [Fe/H] = -0.5 to -3.5 with Keck I + HIRES at a resolution of 42,000 and signal-to-noise ratios of near 100. We have determined the stellar parameters spectroscopically from lines of Fe I, Fe II, Ti I and Ti II. The abundances of Be and O were derived by spectrum synthesis techniques, while abundances of Fe, Ti, and Mg were found from many spectral line measurements. There is a linear relationship between [Fe/H] and A(Be) with a slope of +0.88 +-0.03 over three orders of magnitude in [Fe/H]. We fit the relationship between A(Be) and [O/H] with both a single slope and with two slopes. The relationship between [Fe/H] and [O/H] seems robustly linear and we conclude that the slope change in Be vs. O is due to the Be abundance. Although Be is a by-product of CNO, we have used Ti and Mg abundances as alpha-element surrogates for O in part because O abundances are rather sensitive to both stellar temperature and surface gravity. We find that A(Be) tracks [Ti/H] very well with a slope of 1.00 +-0.04. It also tracks [Mg/H] very well with a slope of 0.88 +-0.03. We find that there are distinct differences in the relationships of A(Be) and [Fe/H] and of A(Be) and [O/H] for our dissipative stars and our accretive stars. We suggest that the Be in the dissipative stars was primarily formed by GCR spallation and Be in the accretive stars was formed in the vicinity of SN II.Comment: Accepted for Ap.J. Nov. 10, 2011, v. 741 70 pages, 27 figures, 5 table

    Lithium and Lithium Depletion in Halo Stars on Extreme Orbits

    Full text link
    We have determined Li abundances in 55 metal-poor (3.6 < [Fe/H] < -0.7) stars with extreme orbital kinematics. We find the Li abundance in the Li-plateau stars and examine its decrease in low-temperature, low-mass stars. The Li observations are primarily from the Keck I telescope with HIRES (spectral resolution of ~48,000 and median signal-to-noise per pixel of 140). Abundances or upper limits were determined for Li for all the stars with typical errors of 0.06 dex. Our 14 stars on the Li plateau give A(Li) = log N(Li)/N(H) + 12.00 of 2.215 +-0.110, consistent with earlier results. We find a dependence of the Li abundance on metallicity as measured by [Fe/H] and the Fe-peak elements [Cr/H] and [Ni/H], with a slope of ~0.18. We also find dependences of A(Li) with the alpha elements, Mg, Ca, and Ti. For the n-capture element, Ba, the relation between A(Li) and [Ba/H] has a shallower slope of 0.13; over a range of 2.6 dex in [Ba/H], the Li abundance spans only a factor of two. We examined the possible trends of A(Li) with the characteristics of the orbits of our halo stars, but find no relationship with kinematic or dynamic properties. The stars cooler than the Li plateau are separated into three metallicity subsets. The decrease in A(Li) sets in at hotter temperatures at high metallicities than at low metallicities; this is in the opposite sense of the predictions for Li depletion from standard and non-standard models.Comment: 29 pages including 3 tables and 12 figures Accepted by The Astrophysical Journal, for the 1 November 2005 issue, v. 63

    Fiducial Stellar Population Sequences for the VJKs Photometric System

    Full text link
    We have obtained broad-band near-infrared photometry for seven Galactic star clusters (M92, M15, M13, M5, NGC1851, M71 and NGC6791) using the WIRCam wide-field imager on the Canada-France-Hawaii Telescope, supplemented by images of NGC1851 taken with HAWK-I on the VLT. In addition, 2MASS observations of the [Fe/H] ~ 0.0 open cluster M67 were added to the cluster database. From the resultant (V-J)-V and (V-Ks)-V colour-magnitude diagrams (CMDs), fiducial sequences spanning the range in metallicity, -2.4 < [Fe/H] < +0.3, have been defined which extend (for most clusters) from the tip of the red-giant branch (RGB) to ~ 2.5 magnitudes below the main-sequence turnoff. These fiducials provide a valuable set of empirical isochrones for the interpretation of stellar population data in the 2MASS system. We also compare our newly derived CMDs to Victoria isochrones that have been transformed to the observed plane using recent empirical and theoretical colour-Teff relations. The models are able to reproduce the entire CMDs of clusters more metal rich than [Fe/H] ~ -1.4 quite well, on the assumption of the same reddenings and distance moduli that yield good fits of the same isochrones to Johnson-Cousins BV(RI)C photometry. However, the predicted giant branches become systematically redder than the observed RGBs as the cluster metallicity decreases. Possible explanations for these discrepancies are discussed.Comment: 18 pages, 20 figures, Accepted for publication in A

    Beryllium in the Ultra-Lithium-Deficient,Metal-Poor Halo Dwarf, G186-26

    Full text link
    The vast majority of low-metal halo dwarfs show a similar amount of Li; this has been attributed to the Li that was produced in the Big Bang. However, there are nine known halo stars with T >> 5900 K and [Fe/H] << -1.0 that are ultra-Li-deficient. We have looked for Be in the very low metallicity star, G 186-26 at [Fe/H] = -2.71, which is one of the ultra-Li-deficient stars. This star is also ultra-Be deficient. Relative to Be in the Li-normal stars at [Fe/H] = -2.7, G 182-26 is down in Be by more than 0.8 dex. Of two potential causes for the Li-deficiency -- mass-transfer in a pre-blue straggler or extra rotationally-induced mixing in a star that was initially a very rapid rotator -- the absence of Be favors the blue-straggler hypothesis, but the rotation model cannot be ruled-out completely.Comment: Accepted for Ap.J. Letters 10 pages, 4 figure

    Standard Cosmic Ray Energetics and Light Element Production

    Full text link
    The recent observations of Be and B in metal poor stars has led to a reassessment of the origin of the light elements in the early Galaxy. At low it is metallicity ([O/H] < -1.75), it is necessary to introduce a production mechanism which is independent of the interstellar metallicity (primary). At higher metallicities, existing data might indicate that secondary production is dominant. In this paper, we focus on the secondary process, related to the standard Galactic cosmic rays, and we examine the cosmic ray energy requirements for both present and past epochs. We find the power input to maintain the present-day Galactic cosmic ray flux is about 1.5e41 erg/s = 5e50 erg/century. This implies that, if supernovae are the sites of cosmic ray acceleration, the fraction of explosion energy going to accelerated particles is about 30%, a value which we obtain consistently both from considering the present cosmic ray flux and confinement and from the present 9Be and 6Li abundances. Using the abundances of 9Be (and 6Li) in metal-poor halo stars, we extend the analysis to show the effect of the interstellar gas mass on the standard galactic cosmic ray energetic constraints on models of Li, Be, and B evolution. The efficiency of the beryllium production per erg may be enhanced in the past by a factor of about 10; thus the energetic requirement by itself cannot be used to rule out a secondary origin of light elements. Only a clear and undisputable observational determination of the O-Fe relation in the halo will discriminate between the two processes. (abridged)Comment: 24 pages, LaTeX, uses aastex macro

    Early Universe Constraints on Time Variation of Fundamental Constants

    Full text link
    We study the time variation of fundamental constants in the early Universe. Using data from primordial light nuclei abundances, CMB and the 2dFGRS power spectrum, we put constraints on the time variation of the fine structure constant α\alpha, and the Higgs vacuum expectation value withoutassuminganytheoreticalframework.Avariationin without assuming any theoretical framework. A variation in leads to a variation in the electron mass, among other effects. Along the same line, we study the variation of α\alpha and the electron mass mem_e. In a purely phenomenological fashion, we derive a relationship between both variations.Comment: 18 pages, 12 figures, accepted for publication in Physical Review

    Stellar pollution and [Fe/H] in the Hyades

    Get PDF
    The Hyades open cluster presents a unique laboratory for planet formation and stellar pollution studies because all of the stars have essentially the same age and were born from the same cloud of gas. Furthermore, with an age of roughly 650 Myr most of the intermediate and low mass stars are on the main sequence. Given these assumptions, the accretion of metal rich material onto the surface of a star during and shortly after the formation of planetary systems should be evident via the enhanced metallicity of the star. Building on previous work, stellar evolution models which include the effects of stellar pollution are applied to the Hyades. The results of several Monte Carlo simulations, in which the amount of accreted material is drawn at random from a Gaussian distribution with standard deviation equal to half the mean, are presented. An effective temperature-[Fe/H] relation is produced and compared to recent observations. The theoretical predictions presented in this letter will be useful in future searches for evidence of stellar pollution due to planet formation. It is concluded that stellar pollution effects at the mean level of >=2 Earth masses of iron are ruled out by current observational data.Comment: 10 pages, 3 figures, AASTeX, accepted to the ApJ

    Are beryllium abundances anomalous in stars with giant planets?

    Full text link
    In this paper we present beryllium (Be) abundances in a large sample of 41 extra-solar planet host stars, and for 29 stars without any known planetary-mass companion, spanning a large range of effective temperatures. The Be abundances were derived through spectral synthesis done in standard Local Thermodynamic Equilibrium, using spectra obtained with various instruments. The results seem to confirm that overall, planet-host stars have ``normal'' Be abundances, although a small, but not significant, difference might be present. This result is discussed, and we show that this difference is probably not due to any stellar ``pollution'' events. In other words, our results support the idea that the high-metal content of planet-host stars has, overall, a ``primordial'' origin. However, we also find a small subset of planet-host late-F and early-G dwarfs that might have higher than average Be abundances. The reason for the offset is not clear, and might be related either to the engulfment of planetary material, to galactic chemical evolution effects, or to stellar-mass differences for stars of similar temperature.Comment: 15 pages, 9 figures, accepted for publication in Astronomy & Astrophysic
    corecore