26 research outputs found
Environmental life cycle assessment of ammoniaâbased electricity
In recent years, several researchers have studied the potential use of ammonia (NH3) as an energy vector, focused on the techno-economic advantages and challenges for full global deployment. The use of ammonia as fuel is seen as a strategy to support decarbonization; however, to confirm the sustainability of the shift to ammonia as fuel in thermal engines, a study of the environmental profile is needed. This paper aims to assess the environmental life cycle impacts of ammonia-based electricity generated in a combined heat and power cycle for different ammonia production pathways. A cradle-to-gate assessment was developed for both ammonia production and ammonia-based electricity generation. The results show that electrolysis-based ammonia from renewable and nuclear energy have a better profile in terms of global warming potential (0.09â0.70 t CO2-eq/t NH3), fossil depletion potential (3.62â213.56 kg oil-eq/t NH3), and ozone depletion potential (0.001â0.082 g CFC-11-eq/t NH3). In addition, surplus heat for district or industrial applications offsets some of the environmental burden, such as a more than 29% reduction in carbon footprint. In general, ammonia-based combined heat and power production presents a favorable environmental profile, for example, the carbon footprint ranges from â0.480 to 0.003 kg CO2-eq/kWh
Integrated Operational Taxonomic Units (IOTUs) in Echolocating Bats: A Bridge between Molecular and Traditional Taxonomy
Background: Nowadays, molecular techniques are widespread tools for the identification of biological entities. However,
until very few years ago, their application to taxonomy provoked intense debates between traditional and molecular
taxonomists. To prevent every kind of disagreement, it is essential to standardize taxonomic definitions. Along these lines,
we introduced the concept of Integrated Operational Taxonomic Unit (IOTU). IOTUs come from the concept of Operational
Taxonomic Unit (OTU) and paralleled the Molecular Operational Taxonomic Unit (MOTU). The latter is largely used as
a standard in many molecular-based works (even if not always explicitly formalized). However, while MOTUs are assigned
solely on molecular variation criteria, IOTUs are identified from patterns of molecular variation that are supported by at least
one more taxonomic characteristic.
Methodology/Principal Findings: We tested the use of IOTUs on the widest DNA barcoding dataset of Italian echolocating
bats species ever assembled (i.e. 31 species, 209 samples). We identified 31 molecular entities, 26 of which corresponded to
the morphologically assigned species, two MOTUs and three IOTUs. Interestingly, we found three IOTUs in Myotis nattereri,
one of which is a newly described lineage found only in central and southern Italy. In addition, we found a level of molecular
variability within four vespertilionid species deserving further analyses. According to our scheme two of them (i.e.
M. bechsteinii and Plecotus auritus) should be ranked as unconfirmed candidate species (UCS).
Conclusions/Significance: From a systematic point of view, IOTUs are more informative than the general concept of OTUs
and the more recent MOTUs. According to information content, IOTUs are closer to species, although it is important to
underline that IOTUs are not species. Overall, the use of a more precise panel of taxonomic entities increases the clarity in
the systematic field and has the potential to fill the gaps between modern and traditional taxonomy
Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology
A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons
Associations between depressive symptoms and disease progression in older patients with chronic kidney disease: results of the EQUAL study
Background Depressive symptoms are associated with adverse clinical outcomes in patients with end-stage kidney disease; however, few small studies have examined this association in patients with earlier phases of chronic kidney disease (CKD). We studied associations between baseline depressive symptoms and clinical outcomes in older patients with advanced CKD and examined whether these associations differed depending on sex. Methods CKD patients (>= 65 years; estimated glomerular filtration rate <= 20 mL/min/1.73 m(2)) were included from a European multicentre prospective cohort between 2012 and 2019. Depressive symptoms were measured by the five-item Mental Health Inventory (cut-off <= 70; 0-100 scale). Cox proportional hazard analysis was used to study associations between depressive symptoms and time to dialysis initiation, all-cause mortality and these outcomes combined. A joint model was used to study the association between depressive symptoms and kidney function over time. Analyses were adjusted for potential baseline confounders. Results Overall kidney function decline in 1326 patients was -0.12 mL/min/1.73 m(2)/month. A total of 515 patients showed depressive symptoms. No significant association was found between depressive symptoms and kidney function over time (P = 0.08). Unlike women, men with depressive symptoms had an increased mortality rate compared with those without symptoms [adjusted hazard ratio 1.41 (95% confidence interval 1.03-1.93)]. Depressive symptoms were not significantly associated with a higher hazard of dialysis initiation, or with the combined outcome (i.e. dialysis initiation and all-cause mortality). Conclusions There was no significant association between depressive symptoms at baseline and decline in kidney function over time in older patients with advanced CKD. Depressive symptoms at baseline were associated with a higher mortality rate in men
Theoretical Investigation of Active Sites at the Corners of MgCl2 Crystallites in Supported Ziegler-Natta Catalysts
We present a theoretical study on possible models of catalytic active species corresponding to Ti-chloride species adsorbed at the corners of MgCl2 crystallites. First we focused our efforts on the interaction between prototypes of three industrially relevant Lewis bases used as internal donors (1,3-diethers, alkoxysilanes and succinates) and MgCl2 units at the corner of a MgCl2 crystallite. Our calculations show that the energetic cost to extract MgCl2 units at the corner of (104) edged MgCl2 crystallites is not prohibitive, and that Lewis bases added during catalyst preparation make this process easier. After removal of one MgCl2 unit, a short (110) stretch joining the (104) edges is formed. Adsorption of TiCl4 on the generated vacancy originates a Ti-active species. In the second part of this manuscript, we report on the stereo- and regioselective behavior of this model of active species in the absence as well as in the presence of the three Lewis bases indicated above. Surface reconstruction due to the additional adsorption of an extra MgCl2 layer is also considered. We show that, according to experimental data, Lewis bases coordinated in the proximity of the active Ti center confer a remarkable stereoselectivity. Moreover, surface reconstruction as well as donor coordination would improve regioselectivity by disfavoring secondary propene insertion. While still models of possible active species, our results indicate that defects, corners and surface reconstruction should be considered as possible anchoring sites for the catalytically active Ti-species