34 research outputs found
Response of spontaneously hypertensive rats to inhalation of fine and ultrafine particles from traffic: experimental controlled study
BACKGROUND: Many epidemiological studies have shown that mass concentrations of ambient particulate matter (PM) are associated with adverse health effects in the human population. Since PM is still a very crude measure, this experimental study has explored the role of two distinct size fractions: ultrafine (<0.15 μm) and fine (0.15- 2.5 μm) PM. In a series of 2-day inhalation studies, spontaneously hypersensitive (SH) rats were exposed to fine, concentrated, ambient PM (fCAP) at a city background location or a combination of ultrafine and fine (u+fCAP) PM at a location dominated by traffic. We examined the effect on inflammation and both pathological and haematological indicators as markers of pulmonary and cardiovascular injury. Exposure concentrations ranged from 399 μg/m(3 )to 3613 μg/m(3 )for fCAP and from 269μg/m(3 )to 556 μg/m(3 )for u+fCAP. RESULTS: Ammonium, nitrate, and sulphate ions accounted for 56 ± 16% of the total fCAP mass concentrations, but only 17 ± 6% of the u+fCAP mass concentrations. Unambiguous particle uptake in alveolar macrophages was only seen after u+fCAP exposures. Neither fCAP nor u+fCAP induced significant changes of cytotoxicity or inflammation in the lung. However, markers of oxidative stress (heme oxygenase-1 and malondialdehyde) were affected by both fCAP and u+fCAP exposure, although not always significantly. Additional analysis revealed heme oxygenase-1 (HO-1) levels that followed a nonmonotonic function with an optimum at around 600 μg/m(3 )for fCAP. As a systemic response, exposure to u+fCAP and fCAP resulted in significant decreases of the white blood cell concentrations. CONCLUSION: Minor pulmonary and systemic effects are observed after both fine and ultrafine + fine PM exposure. These effects do not linearly correlate with the CAP mass. A greater component of traffic CAP and/or a larger proportion ultrafine PM does not strengthen the absolute effects
Effects of particulate matter on the pulmonary and vascular system: time course in spontaneously hypertensive rats
BACKGROUND: This study was performed within the scope of two multi-center European Commission-funded projects (HEPMEAP and PAMCHAR) concerning source-composition-toxicity relationship for particulate matter (PM) sampled in Europe. The present study aimed to optimize the design for PM in vivo toxicity screening studies in terms of dose and time between a single exposure and the determination of the biological responses in a rat model mimicking human disease resulting in susceptibility to ambient PM. Dust in thoracic PM size-range (aerodynamic diameter <10 μm) was sampled nearby a road tunnel (RTD) using a high volume cascade impactor. Spontaneously hypertensive rats were exposed to urban dust collected in Ottawa, Canada (EHC-93 10 mg/kg of body weight; reference PM) or different RTD doses (0.3, 1, 3, 10 mg/kg of body weight) by intratracheal instillation. Necropsy was performed at 4, 24, or 48 hr after exposure. RESULTS: The neutrophil numbers in bronchoalveolar lavage fluid increased tremendously after exposure to the highest RTD doses or EHC-93. Furthermore, PM exposure slightly affected blood coagulation since there was a small but significant increase in the plasma fibrinogen levels (factor 1.2). Pulmonary inflammation and oxidative stress as well as changes in blood coagulation factors and circulating blood cell populations were observed within the range of 3 to 10 mg PM/kg of body weight without significant pulmonary injury. CONCLUSION: The optimal dose for determining the toxicity ranking of ambient derived PM samples in spontaneously hypertensive rats is suggested to be between 3 and 10 mg PM/kg of body weight under the conditions used in the present study. At a lower dose only some inflammatory effects were detected, which will probably be too few to be able to discriminate between PM samples while a completely different response pattern was observed with the highest dose. In addition to the dose, a 24-hr interval from exposure to sacrifice seemed appropriate to assess the relative toxic potency of PM since the majority of the health effects were observed one day after PM exposure compared to the other times examined. The aforementioned considerations provide a good basis for conducting PM toxicity screening studies in spontaneously hypertensive rats
Diesel Engine Exhaust Initiates a Sequence of Pulmonary and Cardiovascular Effects in Rats
This study was designed to determine the sequence of events leading to cardiopulmonary effects following acute inhalation of diesel engine exhaust in rats. Rats were exposed for 2 h to diesel engine exhaust (1.9 mg/m3), and biological parameters related to antioxidant defense, inflammation, and procoagulation were examined after 4, 18, 24, 48, and 72 h.
This in vivo inhalation study showed a pulmonary anti-oxidant response (an increased activity of the anti-oxidant enzymes glutathione peroxidase and superoxide dismutase and an increase in heme oxygenase-1 protein, heme oxygenase activity, and uric acid) which precedes the inflammatory response (an increase in IL-6 and TNF-α). In addition, increased plasma thrombogenicity and immediate anti-oxidant defense gene expression in aorta tissue shortly after the exposure might suggest direct translocation of diesel engine exhaust components to the vasculature but mediation by other pathways cannot be ruled out. This study therefore shows that different stages in oxidative stress are not only affected by dose increments but are also time dependent
The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice
AbstractBackgroundCerium oxide (CeO2) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles.MethodsAtherosclerosis-prone apolipoprotein E knockout (ApoE−/−) mice were exposed by inhalation to diluted exhaust (1.7mg/m3, 20, 60 or 180min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed.ResultsAddition of CeO2 to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6–8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure.ConclusionsThese results imply that addition of CeO2 nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects
In vitro toxicity of industrially relevant engineered nanoparticles in human alveolar epithelial cells: air–liquid interface versus submerged cultures
Diverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air–liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airborne nano-sized particles. We compared the in vitro toxicity of four ENP used as raw materials in the advanced ceramics sector in human alveolar epithelial-like cells cultured under submerged or ALI conditions. Submerged cultures were exposed to ENP liquid suspensions or to aerosolised ENP at ALI. Toxicity was assessed by determining LDH release, WST-1 metabolisation and DNA damage. Overall, cells were more sensitive to ENP cytotoxic effects when cultured and exposed under ALI. No significant cytotoxicity was observed after 24 h exposure to ENP liquid suspensions, although aerosolised ENP clearly affected cell viability and LDH release. In general, all ENP increased primary DNA damage regardless of the exposure mode, where an increase in DNA strand-breaks was only detected under submerged conditions. Our data show that at relevant occupational concentrations, the selected ENP exert mild toxicity to alveolar epithelial cells and exposure at ALI might be the most suitable choice when assessing ENP toxicity in respiratory models under realistic exposure conditions
In Vitro Toxicity of Industrially Relevant Engineered Nanoparticles in Human Alveolar Epithelial Cells: Air-Liquid Interface versus Submerged Cultures
This article belongs to the Special Issue Engineered Nanomaterials Exposure and Risk Assessment: Occupational Health and SafetyDiverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air-liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airborne nano-sized particles. We compared the in vitro toxicity of four ENP used as raw materials in the advanced ceramics sector in human alveolar epithelial-like cells cultured under submerged or ALI conditions. Submerged cultures were exposed to ENP liquid suspensions or to aerosolised ENP at ALI. Toxicity was assessed by determining LDH release, WST-1 metabolisation and DNA damage. Overall, cells were more sensitive to ENP cytotoxic effects when cultured and exposed under ALI. No significant cytotoxicity was observed after 24 h exposure to ENP liquid suspensions, although aerosolised ENP clearly affected cell viability and LDH release. In general, all ENP increased primary DNA damage regardless of the exposure mode, where an increase in DNA strand-breaks was only detected under submerged conditions. Our data show that at relevant occupational concentrations, the selected ENP exert mild toxicity to alveolar epithelial cells and exposure at ALI might be the most suitable choice when assessing ENP toxicity in respiratory models under realistic exposure conditions.This research was funded by CERASAFE (www.cerasafe.eu; accessed on 26 October 2021),
with the support of ERA-NET SIINN (project id:16) and the Portuguese Foundation for Science and
Technology (FCT; SIINN/0004/2014). This work was also supported by the NanoBioBarriers project
(PTDC/MED-TOX/31162/2017), co-financed by the Operational Program for Competitiveness and
Internationalization (POCI) through European Regional Development Funds (FEDER/FNR) and FCT;
Spanish Ministry of Science and Innovation (projects PCIN-2015-173-C02-01 and CEX2018-000794-
S-Severo Ochoa), and by the Romanian National Authority for Scientific Research and Innovation
(CCCDI-UEFISCDI, project number 29/2016 within PNCDI III). M.J. Bessa (SFRH/BD/120646/2016)
and F. Brandão (SFRH/BD/101060/2014) are recipients of FCT PhD scholarships under the framework of Human Capital Operating Program (POCH) and European Union funding. The Doctoral
Program in Biomedical Sciences, of the ICBAS—University of Porto, offered additional funds. S. Fraga
thanks FCT for funding through program DL 57/2016–Norma transitória (Ref. DL-57/INSA-06/2018).
Thanks are also due to FCT/MCTES for the financial support to EPIUnit (UIDB/04750/2020).info:eu-repo/semantics/publishedVersio
Inhaled Nanoparticles Accumulate at Sites of Vascular Disease
The development of engineered nanomaterials is growing exponentially, despite concerns over their potential similarities to environmental nanoparticles that are associated with significant cardiorespiratory morbidity and mortality. The mechanisms through which inhalation of nanoparticles could trigger acute cardiovascular events are emerging, but a fundamental unanswered question remains: Do inhaled nanoparticles translocate from the lung in man and directly contribute to the pathogenesis of cardiovascular disease? In complementary clinical and experimental studies, we used gold nanoparticles to evaluate particle translocation, permitting detection by high-resolution inductively coupled mass spectrometry and Raman microscopy. Healthy volunteers were exposed to nanoparticles by acute inhalation, followed by repeated sampling of blood and urine. Gold was detected in the blood and urine within 15 min to 24 h after exposure, and was still present 3 months after exposure. Levels were greater following inhalation of 5 nm (primary diameter) particles compared to 30 nm particles. Studies in mice demonstrated the accumulation in the blood and liver following pulmonary exposure to a broader size range of gold nanoparticles (2-200 nm primary diameter), with translocation markedly greater for particles <10 nm diameter. Gold nanoparticles preferentially accumulated in inflammation-rich vascular lesions of fat-fed apolipoproteinE-deficient mice. Furthermore, following inhalation, gold particles could be detected in surgical specimens of carotid artery disease from patients at risk of stroke. Translocation of inhaled nanoparticles into the systemic circulation and accumulation at sites of vascular inflammation provides a direct mechanism that can explain the link between environmental nanoparticles and cardiovascular disease and has major implications for risk management in the use of engineered nanomaterials
First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses
Graphene oxide nanomaterials are being developed for wide-ranging applications but are associated with potential safety concerns for human health. We conducted a double-blind randomized controlled study to determine how the inhalation of graphene oxide nanosheets affects acute pulmonary and cardiovascular function. Small and ultrasmall graphene oxide nanosheets at a concentration of 200 μg m−3 or filtered air were inhaled for 2 h by 14 young healthy volunteers in repeated visits. Overall, graphene oxide nanosheet exposure was well tolerated with no adverse effects. Heart rate, blood pressure, lung function and inflammatory markers were unaffected irrespective of graphene oxide particle size. Highly enriched blood proteomics analysis revealed very few differential plasma proteins and thrombus formation was mildly increased in an ex vivo model of arterial injury. Overall, acute inhalation of highly purified and thin nanometre-sized graphene oxide nanosheets was not associated with overt detrimental effects in healthy humans. These findings demonstrate the feasibility of carefully controlled human exposures at a clinical setting for risk assessment of graphene oxide, and lay the foundations for investigating the effects of other two-dimensional nanomaterials in humans. Clinicaltrials.gov ref: NCT03659864
Health effects and time course of particulate matter on the cardiopulmonary system in rats with lung inflammation
Recent epidemiological studies associate health effects and particulate matter in ambient air. Exacerbation of the particle-induced inflammation can be a mechanism responsible for increased hospitalization and death due to cardiopulmonary events in high-risk groups of the population. Systems regulating blood pressure that depend on lung integrity can be involved in progression of cardiovascular diseases. This study focused on the expression levels of various genes involved in cardiovascular and pulmonary diseases to assess their role in the onset of cardiovascular problems due to ambient particulate matter and compared these with the corresponding products. Rats with ozone-induced (1600 μg/m3; 8 h) pulmonary inflammation were exposed to 0.5 mg, 1.5 mg, or 5 mg of particulate matter (PM) from Ottawa Canada (EHC-93) by intratracheal instillation. mRNA levels of various genes and their products were measured 2, 4, and 7 d after instillation. At 2 d after exposures to PM, tumor necrosis factor (TNF)-α levels in bronchoalveolar lavage fluid (BALF) were elevated approximately 4 times for the highest EHC-93 dose. MIP-2 protein levels in BALF were elevated approximately three times during the entire time period studied, whereas IL-6 levels were not affected compared to control groups. The MIP-2 mRNA levels revealed a similar pattern of induction. A twofold increase in endothelin (ET)-1 levels at d 2 and a 20 decrease in angiotensin-converting enzyme (ACE) activity at d 7 were measured in plasma. A 60 decrease of ACE and ET-1 mRNA levels suggested a possible endothelial damage in the lung blood vessels. Inducible nitric oxide synthase (iNOS) mRNA was found to be increased 3.5 times 2 d after instillation of the particles. Therefore, the endothelial damage could have been caused by large amounts of the free radical NO. Also, plasma levels of fibrinogen were elevated (20Œ which could presumably increase blood viscosity, leading to decreased tissue blood flow. These changes in hematological and hemodynamic parameters observed in our study are in line with heart failure in high-risk groups of the population after high air pollution episodes
Health effects and time course of particulate matter on the cardiopulmonary system in rats with lung inflammation
Recent epidemiological studies associate health effects and particulate matter in ambient air. Exacerbation of the particle-induced inflammation can be a mechanism responsible for increased hospitalization and death due to cardiopulmonary events in high-risk groups of the population. Systems regulating blood pressure that depend on lung integrity can be involved in progression of cardiovascular diseases. This study focused on the expression levels of various genes involved in cardiovascular and pulmonary diseases to assess their role in the onset of cardiovascular problems due to ambient particulate matter and compared these with the corresponding products. Rats with ozone-induced (1600 μg/m3; 8 h) pulmonary inflammation were exposed to 0.5 mg, 1.5 mg, or 5 mg of particulate matter (PM) from Ottawa Canada (EHC-93) by intratracheal instillation. mRNA levels of various genes and their products were measured 2, 4, and 7 d after instillation. At 2 d after exposures to PM, tumor necrosis factor (TNF)-α levels in bronchoalveolar lavage fluid (BALF) were elevated approximately 4 times for the highest EHC-93 dose. MIP-2 protein levels in BALF were elevated approximately three times during the entire time period studied, whereas IL-6 levels were not affected compared to control groups. The MIP-2 mRNA levels revealed a similar pattern of induction. A twofold increase in endothelin (ET)-1 levels at d 2 and a 20% decrease in angiotensin-converting enzyme (ACE) activity at d 7 were measured in plasma. A 60% decrease of ACE and ET-1 mRNA levels suggested a possible endothelial damage in the lung blood vessels. Inducible nitric oxide synthase (iNOS) mRNA was found to be increased 3.5 times 2 d after instillation of the particles. Therefore, the endothelial damage could have been caused by large amounts of the free radical NO. Also, plasma levels of fibrinogen were elevated (20%), which could presumably increase blood viscosity, leading to decreased tissue blood flow. These changes in hematological and hemodynamic parameters observed in our study are in line with heart failure in high-risk groups of the population after high air pollution episodes