36 research outputs found

    Addition of water to an alcoholic RAFT PISA formulation leads to faster kinetics but limits the evolution of copolymer morphology

    Get PDF
    RAFT dispersion polymerization of benzyl methacrylate (BzMA) has been used previously (E. R. Jones, et al., Macromolecules, 2012, 45, 5091) to prepare poly(2-(dimethylamino)ethyl methacrylate)-poly- (benzyl methacrylate) (PDMA–PBzMA) diblock copolymer nanoparticles in ethanol via polymerizationinduced self-assembly (PISA). However, the rate of polymerization was relatively slow, with incomplete monomer conversions being obtained when targeting higher mean degrees of polymerization (DP) even after 24 h at 70 °C. Herein we examine the effect of the addition of up to 20% w/w water co-solvent on the kinetics of BzMA polymerization for this PISA formulation. Significantly faster polymerizations were observed: for a target DP of 200, 90% BzMA conversion was achieved within just 6 h in the presence of 20% w/w water, compared to only 35% conversion in anhydrous ethanol under the same conditions. This rate enhancement enables much higher mean DPs to be obtained for the core-forming PBzMA and is attributed to greater partitioning of the BzMA monomer within the particles, which increases the local monomer concentration. However, the presence of water adversely affected the evolution of copolymer morphology from spheres to worms to vesicles when employing a relatively short PDMA chain transfer agent, with only kinetically-trapped spheres being obtained at higher levels of added water. Aqueous electrophoresis studies indicate that the PDMA stabilizer chains acquired partial cationic charge in the presence of water. This leads to more efficient inter-particle repulsion, thus preventing the sphere-sphere fusion events required for an evolution in morphology. In summary, the addition of water to such PISA formulations allows the more efficient synthesis of spherical nanoparticles, but should be used with caution if either diblock copolymer worms or vesicles are desired

    ABA triblock copolymers: from controlled synthesis to controlled function

    Get PDF
    The ABA amphiphilic block copolymers, poly(hydroxyethyl methacrylate-hlock-methylphenylsilane-block-hydroxyethyl methacrylate) (PHEMA-PMPS-PHEMA) and poly[oligo(ethylene glycol) methyl ether methacrylate-block-methylphenylsilane-block-oligo(ethylene glycol). methyl ether methacrylate] (POEGMA-PMPS-POEGMA) were successfully synthesised via atom transfer radical polymerisation (ATRP). Macroinitiators suitable for the ATRP of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate were synthesised from the condensation reaction of alpha,omega-dihalopolymethylphenylsilane and 2'-hydroxyethyl 2-bromo-2-methylpropanoate. The copolymers were characterised using H-1 NMR and C-13 NMR spectroscopy and molecular weight characteristics were determined using size exclusion chromatography and H-1 NMR. The aggregation behaviour of some of the copolymers in water was studied using transmission and scanning electron microscopy and dynamic light scattering. These revealed the prevalent aggregate species to be micelles. Larger aggregates of 300-1000 nm diameter were also observed. The UV induced degradation of the aggregates was studied by UV-Vis spectroscopy. The thermal behaviour of selected copolymers was studied by differential scanning calorimetry and microphase separation of the two components was demonstrated

    How Do Spherical Diblock Copolymer Nanoparticles Grow during RAFT Alcoholic Dispersion Polymerization?

    Get PDF
    A poly(2-(dimethylamino)ethyl methacrylate) (PDMA) chain transfer agent (CTA) is used for the reversible addition–fragmentation chain transfer (RAFT) alcoholic dispersion polymerization of benzyl methacrylate (BzMA) in ethanol at 70 °C. THF GPC analysis indicated a well-controlled polymerization with molecular weight increasing linearly with conversion. GPC traces also showed high blocking efficiency with no homopolymer contamination apparent and Mw/Mn values below 1.35 in all cases. 1H NMR studies confirmed greater than 98% BzMA conversion for a target PBzMA degree of polymerization (DP) of up to 600. The PBzMA block becomes insoluble as it grows, leading to the in situ formation of sterically stabilized diblock copolymer nanoparticles via polymerization-induced self-assembly (PISA). Fixing the mean DP of the PDMA stabilizer block at 94 units and systematically varying the DP of the PBzMA block enabled a series of spherical nanoparticles of tunable diameter to be obtained. These nanoparticles were characterized by TEM, DLS, MALLS, and SAXS, with mean diameters ranging from 35 to 100 nm. The latter technique was particularly informative: data fits to a spherical micelle model enabled calculation of the core diameter, surface area occupied per copolymer chain, and the mean aggregation number (Nagg). The scaling exponent derived from a double-logarithmic plot of core diameter vs PBzMA DP suggests that the conformation of the PBzMA chains is intermediate between the collapsed and fully extended state. This is in good agreement with 1H NMR studies, which suggest that only 5−13% of the BzMA residues of the core-forming chains are solvated. The Nagg values calculated from SAXS and MALLS are in good agreement and scale approximately linearly with PBzMA DP. This suggests that spherical micelles grow in size not only as a result of the increase in copolymer molecular weight during the PISA synthesis but also by exchange of individual copolymer chains between micelles and/or by sphere–sphere fusion events

    Energietransitie in de gebouwde omgeving : bijdrage ECN aan SCOPE 2030

    Get PDF

    Plastic- and liquid-crystalline architectures from dendritic receptor molecules

    Get PDF
    Host molecules with U-shaped receptor cavities have been derivatized at their convex side with two n-hydrocarbon tails (1), two first-generation (2), and two second-generation (3) monodendritic hydrocarbon tails. Although hosts 1 and 2 display plastic-crystalline behavior, evidence suggests that host 3 forms a cubic liquid-crystalline phase. In this phase, molecules of 3 are arranged in spherical supramacromolecular assemblies, in which the receptor cavities are situated in the core and the hydrocarbon tails at the periphery. The 1:1 host-guest complex of 3 with methyl 3,5-dihydroxybenzoate forms a similar liquid-crystalline phase, with the guest included in the core of the assemblies

    Looking for the simplicity in polymer networks - Structure changes and comparative analysis of theoretical approaches to deformation of semi-crystalline polymers

    Get PDF
    To establish relationships between the molecular structure of polyolefines and their physical characteristics which determine possible commercial applications, structural changes and tensile deformation response up to deformations beyond the natural draw ratio were investigated using a variety of experimental approaches. True stress–strain curves were measured at different temperatures so as to estimate the available effective network density, which will eventually define the failure mode of the material under investigation. Analysis of the deformation by means of tensile strain hardening, assuming the Haward–Thackray spring dashpot decoupling assumption by means of Edward-Vilgis’ non-Gaussian rubber-elastic slip-link model, reveals the role of transient and fixed network nodes. It was established by differential scanning calorimetry and X-ray diffraction analysis that the transformation from lamellar to fibrillar morphology passes through the several pronounced stages: deformation of initial lamellae (λ < 1.5); destruction of lamellar structure through the tilt; slippage of molecules in the crystallites; simultaneous formation of fibrils with structural characteristics depending on the molecular structure and on deformation conditions; deformation of the formed fibrillar structure; tilting – formation of chevrons for high molecular weight low density polyethylene or slippage of fibrils and void formation. Distinction between fixed and transient slip link network contributions reveals neatly that although there is a slight drop in the fixed link network density with increasing temperature, this contribution remains of the same order of magnitude and predominantly related to the molecular mass. This observation enhances the idea that the network of entanglements that remain fixed on the time scale of the measurement is actually entropic in nature and does not depend greatly on temperature. Considering slip link contributions, one can find them to be prominently present at ambient temperature and their importance becomes negligible at elevated temperature, except for the case of the most crystalline material

    Looking for the simplicity in polymer networks - Structure changes and comparative analysis of theoretical approaches to deformation of semi-crystalline polymers

    Get PDF
    To establish relationships between the molecular structure of polyolefines and their physical characteristics which determine possible commercial applications, structural changes and tensile deformation response up to deformations beyond the natural draw ratio were investigated using a variety of experimental approaches. True stress-strain curves were measured at different temperatures so as to estimate the available effective network density, which will eventually define the failure mode of the material under investigation. Analysis of the deformation by means of tensile strain hardening, assuming the Haward-Thackray spring dashpot decoupling assumption by means of Edward-Vilgis' non-Gaussian rubber-elastic slip-link model, reveals the role of transient and fixed network nodes. It was established by differential scanning calorimetry and X-ray diffraction analysis that the transformation from lamellar to fibrillar morphology passes through the several pronounced stages: deformation of initial lamellae (lambda <1.5); destruction of lamellar structure through the tilt; slippage of molecules in the crystallites; simultaneous formation of fibrils with structural characteristics depending on the molecular structure and on deformation conditions; deformation of the formed fibrillar structure; tilting - formation of chevrons for high molecular weight low density polyethylene or slippage of fibrils and void formation. Distinction between fixed and transient slip link network contributions reveals neatly that although there is a slight drop in the fixed link network density with increasing temperature, this contribution remains of the same order of magnitude and predominantly related to the molecular mass. This observation enhances the idea that the network of entanglements that remain fixed on the time scale of the measurement is actually entropic in nature and does not depend greatly on temperature. Considering slip link contributions, one can find them to be prominently present at ambient temperature and their importance becomes negligible at elevated temperature, except for the case of the most crystalline material

    Molecular Structure, Phase Composition, Melting Behavior, and Chain Entanglements in the Amorphous Phase of High-Density Polyethylenes

    No full text
    A methodology for estimating the entanglement density in the amorphous phase of semicrystalline polyolefins was developed. The method is based on the analysis of the density of physical network junctions in the amorphous phase by 1H NMR T2 relaxation experiments. The density of the entanglement network was estimated for melt- and high-pressure-crystallized high-density polyethylenes (HDPEs) at temperatures close to and gradually approaching melting. Its value is lower for high-pressure-crystallized HDPE than for the same melt-crystallized polymer. The network of entanglements is characterized by the fraction of entangled network chains, the weight-average molecular weight of the network chains between apparent chain entanglements, Me, and the volume average density of apparent chain entanglements. The entanglement network was studied in a series of low- and high-molecular-weight HDPEs and bimodal HDPE samples with different molecular weight characteristics and densities controlled by different contents of the 1-butene comonomer. It turns out that the molecular weight characteristics of the HDPEs influence the entanglement network. The fraction of network chains and the average density of apparent chain entanglements decrease with decreasing molecular weight Mn due to the “dilution” effect caused by disentangled chain-end segments increasing the Me. The current methodology is of interest for studying the effect of crystallization conditions, molecular structures, and short-chain branches on phase composition, melting behavior, and chain entanglements in the amorphous phase of polyolefins. The method allows estimation of the fraction of network chains, which potentially can form tie-chain segments during deformation. The effect of short-chain branches and molecular weight characteristics on the creep response of polyolefins is discussed
    corecore