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Abstract

In this paper, new bolaform cholesteryl imide derivatives with different spacers were designed and synthesized.
Their gelation behaviors in 23 solvents were investigated, and some of them were found to be low molecular mass
organic gelators. The experimental results indicated that these as-formed organogels can be regulated by changing
the flexible/rigid segments in spacers and organic solvents. Suitable combination of flexible/rigid segments in
molecular spacers in the present cholesteryl gelators is favorable for the gelation of organic solvents. Scanning
electron microscopy and atomic force microscopy observations revealed that the gelator molecules self-assemble
into different aggregates, from wrinkle and belt to fiber with the change of spacers and solvents. Spectral studies
indicated that there existed different H-bond formations between imide groups and assembly modes, depending
on the substituent spacers in molecular skeletons. The present work may give some insight into the design and
character of new organogelators and soft materials with special molecular structures.
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Background

Organogels, which are various three-dimensional (3D)
aggregates with micrometer-scale lengths and nanometer-
scale diameters immobilizing the flow of liquids, have
been well known for wide applications on materials, drug
delivery, agents, and sensors as well as water purification
in recent years [1-8]. The driving forces responsible for gel
formations are specific or non-covalent interactions
such as the dipole-dipole interaction, van der Waals
forces, hydrogen bonding, m-m stacking, and host-guest
interaction [9-14]. In particular, complementary hydrogen
bonding patterns play a very important role in forming
various architectures, and their application in the fabrica-
tion of organogels has been attempted [15-17]. In addition,
although gels are early found in polymer systems, there has
recently been an increasing interest in low molecular mass
organic gelators (LMOGs) [18-20]. Such organogels
have some advantages over polymer gels: the molecular
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structure of the gelator is defined, and the gel process is
usually reversible. Such properties make it possible to
design various functional gel systems and produce more
complicated and controllable nanostructures [21-25].
Recently, cholesterol-based imide derivatives have been
reported as a new class of organogelator architectures
because of their unique directional self-association
through van der Waals interactions in the aggregates of
the gelators [26]. For example, Shinkai and co-workers
prepared a number of dicholesterol derivatives bearing
various functional linkers as versatile gelators [27-32] and
obtained inorganic materials possessing unique structures
by using the corresponding gels as templates. In our
reported work, the gelation properties of some cholesterol
imide derivatives consisting of cholesteryl units and
photoresponsive azobenzene substituent groups have been
investigated [33]. We found that a subtle change in
the headgroup of azobenzene segment can produce a
dramatic change in the gelation behavior of both
compounds. In addition, the gelation properties of bolaform
and trigonal cholesteryl derivatives with different molecular
skeletons have been characterized [34]. Therein, we
have investigated the effect of molecular shapes on
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the microstructures of such organogels and found
that various kinds of hydrogen bond interactions
among the molecules play an important role in the
formation of gels.

As a continuous work, herein, we have designed and
synthesized some bolaform cholesteryl imide derivatives
with different spacers. In all compounds, the diphenyl
group, alkyl chains, or hydrophilic imine groups in spacers
linked by ether band were symmetrically attached to chol-
esterol substituent headgroups to show bolaform molecular
skeletons. We have found that most of the compounds
could form different organogels in various organic solvents.
Characterization of these organogels by scanning electron
microscopy (SEM) and atomic force microscopy (AFM)
revealed different structures of the aggregates in the gels.
We have investigated the effect of spacers in gelators on
the microstructures of such organogels in detail and found
different kinds of hydrogen bond interactions between
imide groups and assembly units.

Methods
Materials
The starting materials, cholesteryl chloroformate,
benzidine, diethylenetriamine, 1,5-bis(4-aminophenoxy)

pentane, 4,4'-diaminodiphenyl ether, and 4,4'-(1,1'-bi-
phenyl-4,4"-diyldioxy)dianiline, were purchased from TCI
Chemicals (Shanghai, China), Alfa Aesar (Beijing, China),
or Sigma-Aldrich Chemicals (Shanghai, China). Other used
reagents shown in Table 1 were all of analysis purity from
Beijing Chemicals and were distilled before use. Deionized
water was used in all cases. Then, these cholesteryl imide
derivatives were synthesized by a similar method according
to our previous report [34]. The products were purified by
recrystallization in an ethanol solution as pale solids.
The final products and their abbreviations are shown
in Figure 1, which were confirmed by 'H NMR and
elemental analysis.

Gel preparation

At present, five kinds of cholesteryl imide derivatives
with different spacers were tested to prepare possible
organogels according to a simple procedure. Firstly, a
weighted amount of imide compounds and a measured
volume of selected pure organic solvent were placed into
a sealed glass bottle, and the solution was ultrasonicated
in a sonic bath for 15 min in order to obtain good
dispersion. After that, the solution was heated in a
water bath at a temperature of 80°C for 15 min.
Then, the solution was cooled to room temperature
in air, and the test bottle was inversed to see if a gel
was formed. At this stage, G, S, PS, and I were denoted to
character the states of imide derivatives, indicating
gel, solution, a few precipitates, and insoluble systems,
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Table 1 Gelation behaviors of the cholesteryl derivatives
at room temperature

Solvents CH-C1 CH-C2 CH-C3 CH-C4 CH-N1
n-Propanol PS PS PS PS S
Isopropanol S PS PS PS S
n-Butanol PS S PS PS S
n-Pentanol PS PS PS PS S
Isopentanol PS PS PS PS PS
Isooctanol G (1.5) S PS PS S
Acetone PS PS PS S PS
Cyclopentanone S PS PS PS S
Cyclohexanone S PS G (20) S S
n-Hexane G (1.5) PS PS PS S
1,4-Dioxane G (1.5) PS G (2.0) S S
Benzene S PS PS S PS
Toluene S PS PS S S
Nitrobenzene G (1.5) PS G (1.5) G (1.5) S
Aniline G(15) PS PS G (20 S
Ethanolamine I I | I S
Ethyl acetate PS PS G (20) S S
n-Butyl acrylate PS PS PS G (20 S
Acetonitrile PS PS S S S
THF S S S S S
Pyridine S PS S S G (25)
Petroleum ether PS PS G (20) S PS
DMF PS PS G (1.5) G(15) S

DMF, dimethylformamide; THF, tetrahydrofuran; S, solution; PS, partially
soluble; G, gel; I, insoluble. For gels, the critical gelation concentrations at
room temperature are shown in parentheses, (w/v)%.

respectively. Critical gelation concentration refers to the
minimum concentration of the gelator for gel formation.

Characterization

These prepared organogels under the critical gelation
concentration were dried using a vacuum pump for more
than 12 h to remove solvents and form xerogels. Then,
the obtained xerogel samples were attached to different
substrates, such as mica, copper foil, glass, and CaF, slice
for morphological and spectral investigation. AFM data
were measured using a Nanoscope VIII Multimode
Scanning Probe Microscope (Veeco Instrument, Plainview,
NY, USA) with silicon cantilever probes. All AFM images
were shown in the height mode without any image
processing except flattening. SEM images of the
xerogels were measured on a Hitachi S-4800 field emission
scanning electron microscope with an accelerating voltage
of 5 to 15 kV. For SEM measurement, the samples were
coated on copper foil fixed by conductive adhesive tape and
shielded by gold nanoparticles. The X-ray diffraction (XRD)
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Figure 1 Structures and abbreviations of bolaform cholesteryl imide derivatives with different spacers.
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pattern was measured using a Rigaku D/max 2550PC
diffractometer (Rigaku Inc., Tokyo, Japan) with a CuKa
radiation wavelength of 0.1542 nm under a voltage of 40
kV and a current of 200 mA. Fourier transform infrared
(FT-IR) spectra were obtained using a Nicolet is/10 FT-IR
spectrophotometer from Thermo Fisher Scientific Inc.
(Waltham, MA, USA) by average 32 scans and at a
resolution of 4 cm™.

Results and discussion

The gelation performances of all compounds in 23 solvents
are listed in Table 1. Examination of the table reveals that
all compounds are efficient gelators except CH-C2. Firstly,
CH-C1 can gel in five kinds of solvents, such as isooctanol,
n-hexane, 1,4-dioxane, nitrobenzene, and aniline. The
corresponding photographs of organogels of CH-C1
in different solvents are shown in Figure 2. As for
CH-C3 with an additional diphenyl group linked by
ether band in the spacer part, six kinds of organogels
were formed. In addition, as for CH-C4 with a five-carbon
alkyl substituent chain linked by phenoxy ether band in
the molecular spacer, the number of formed organogels
shifted to 4. Furthermore, for the case of CH-N1 with a
hydrophilic diethylene spacer containing an amino group,
only one kind of organogel can form in pyridine. The
present data shown in Table 1 indicate that change of
spacer groups in molecular skeletons can have a pro-
found effect on the gelation abilities of the studied
imide compounds, which is similar to some systems
in our previous reports about organogels [24,34-36]. It
seemed that the suitable combination of flexible/rigid
segments in molecular spacers in the present cholesteryl
gelators is favorable for the gelation of organic solvents.
In addition, the stereo effect of phenoxy groups on
intermolecular m-m stacking in the gel formation

process is also obvious for all cases except CH-NI.
Moreover, it should be noted that for some of the
present gelators, CH-C1, CH-C3, and CH-C4 can
form organogels in nitrobenzene. The change of gelation
behaviors can be attributed to the change of the spatial
conformation and intermolecular forces of the gelators
due to different spacers in molecular skeletons, which
may increase the ability of the gelator molecules to self-
assemble into ordered structures, a necessity for forming
organized three-dimensional network structures.

Many researchers have reported that a gelator molecule
constructs nanoscale superstructures such as nanofibers,
nanoribbons, and nanosheets in a supramolecular gel
[37-39]. To obtain a visual insight into the present
gel microstructures, the typical nanostructures of
these gels were studied by SEM and AFM techniques,
as shown in Figures 3 and 4. From the present diverse
images, it can be easily investigated that the microstruc-
tures of the xerogels of all mixtures in different solvents
are significantly different from each other, and the morph-
ologies of the aggregates change from wrinkle and belt to
fiber with change of solvents and gelators. Besides, more
wrinkle-like aggregates with different sizes were prepared
in gels of CH-C3 with an additional diphenyl group linked
by ether band in the spacer part. Furthermore, the
xerogels of CH-C1, CH-C3, and CH-C4 in nitrobenzene
were characterized by AFM, as shown in Figure 4. From
the images, it is interesting to note that morphologies of
fiber, rod, and belt with different sizes were observed for
the three xerogels, respectively. The morphologies of the
aggregates shown in the SEM and AFM images may be
rationalized by considering a commonly accepted idea that
highly directional intermolecular interactions, such as
hydrogen bonding or m-1 interactions, favor formation of
organized belt or fiber micro/nanostructures [40-42]. The
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Figure 2 Photographs of CH-C1 organogels in different solvents: isooctanol, n-hexane, 1,4-dioxane, nitrobenzene, and aniline
(from left to right).

Figure 3 SEM images of xerogels. CH-C1 gels ((a) isooctanol, (b) n-hexane, (c) 1,4-dioxane, (d) nitrobenzene, (e) aniline), CH-C3 gels ((f)
cyclohexanone, (g) 14-dioxane, (h) nitrobenzene, (i) ethyl acetate, (j) petroleum ether, (k) DMF), CH-C4 gels ((I) nitrobenzene, (m) aniline,
(n) n-butyl acrylate, (0) DMF), and CH-N1 gels ((p) pyridine).
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Figure 4 AFM images of xerogels. (a) CH-C1, (b) CH-C3, and (c) CH-C4 gels in nitrobenzene.
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differences of morphologies between different gelators
can be mainly due to the different strengths of the
hydrophobic force between cholesteryl segments, m-m
stacking, and stereo hindrance between flexible/rigid
segments in molecular spacers, which have played an
important role in regulating the intermolecular orderly
stacking and formation of special aggregates.

In addition, with the purpose of investigating the
orderly stacking of xerogel nanostructures, XRD patterns
of all xerogels from gels were measured. Firstly, the data
of CH-C1 were taken as an example, as shown in
Figure 5a. The curve of CH-C1 xerogel from 1,4-dioxane
shows main peaks in the angle region (26 values, 2.17°,
4.32°, 6.53°, and 10.84°) corresponding to d values of 4.07,
2.04, 1.35, and 0.82 nm, respectively. The corresponding
d values follow a ratio of 1:1/2:1/3:1/5, suggesting a
lamellar-like structure of the aggregates in the gel
[43]. As for the curves of CH-C1 in other solvents,

isooctanol, n-hexane, nitrobenzene, and aniline, the
minimum 260 values are 2.62°, 3.02°, 3.08°, and 4.36°,
corresponding to d values of 3.37, 2.93, 2.87, and 2.03
nm, respectively. The change of values can be mainly
attributed to the different assembly modes of the gelator
in various solvents. Furthermore, the curves of CH-CI,
CH-C3, and CH-C4 in nitrobenzene were also compared
to investigate the spacer effects on assembly modes.
Minimum 26 peaks were observed at 4.14° and 2.74° for
CH-C3 and CH-C4, respectively. The corresponding d
values are 2.14 and 3.23 nm, respectively. The XRD results
demonstrated again that the spacers had great effects on
the assembly modes of these imide gelators.

It is well known that hydrogen bonding plays an
important role in the self-assembly process of organogels
[44,45]. At present, we have measured the FT-IR spectra
of xerogels of all compounds in order to further and
investigate the assembly process. Firstly, the xerogels of
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Figure 6 FT-IR spectra of xerogels. (a) CH-C1 (g, isooctanol; b, n-hexane; ¢, 1,4-dioxane; d, nitrobenzene; e, aniline; and f, chloroform solution);
(b) a, CH-CT1; b, CH-C3; and ¢, CH-C4, in nitrobenzene.

CH-C1 were taken as examples, as shown in Figure 6a. As
far as the spectrum of CH-C1 xerogel in nitrobenzene,
some main peaks were observed at 3,436, 3,415, 1,728, and
1,593 cm™. These bands can be attributed to the N-H
stretching, C=0O stretching of ester, amide I band, and
benzene ring, respectively [34,46,47]. These bands indicate
H-bond formation between intermolecular amide and car-
bonyl groups in the gel state. The spectra of other xerogels
in different solvents are different, suggesting the different
H-bond and assembly modes of the gelator in various sol-
vents. In addition, it is interesting to note that the spectra

of xerogels of CH-C1, CH-C3, and CH-C4 in nitrobenzene
were compared in Figure 6b, showing an obvious change.
The main peaks attributed to the C=0O stretching of ester
and the amide I band shifted to 1,726 and 1,707 as well as
1,735 and 1,716 cm™* for CH-C3 and CH-C4, respectively.
This implied that there were differences in the strength and
direction of the intermolecular hydrogen-bond interactions
in these xerogels. The present data further verified that the
spacer in molecular skeletons can regulate the stacking of
the gelator molecules to self-assemble into ordered struc-
tures by distinct intermolecular hydrogen bonding.

(c) CH-C3 in nitrobenzene, and (d) CH-C4 in nitrobenzene.

Figure 7 Rational assembly modes of CH-C1, CH-C3, and CH-C4 in gels. Experimental values of (a, b) CH-C1 in 14-dioxane and nitrobenzene,
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Considering the XRD results described above and
the hydrogen bonding nature of the organized pack-
ing of these organogels as confirmed by FT-IR mea-
surements, some possible packing modes of these
gelators were proposed and schematically shown in
Figure 7. As for CH-C1 xerogel from 1,4-dioxane,
due to the flexibility of ether band in the molecular
skeleton and different intermolecular forces with sol-
vents, after the intermolecular hydrogen bonding and
orderly stacking in different solvents, various repeat-
ing units with different lengths were obtained. So cor-
responding d values of 4.07 and 2.84 nm were
obtained from 1,4-dioxane and nitrobenzene, respect-
ively, as shown in Figure 7a,b. As for CH-C3 with an
additional diphenyl group linked by ether band in the
spacer part, the combination of a flexible ether band
and a rigid diphenyl segment in the molecular spacer
with 1-1t stacking seemed more suitable to adjust molecu-
lar conformation to self-assemble and form organized
stacking nanostructures. The obtained experimental value
of CH-C3 in nitrobenzene was 2.14 nm, which was near
half of the calculated molecular length, suggesting a sym-
metrical stacking mode, shown in Figure 7c. In addition,
for the case of CH-C4 with a five-carbon alkyl substituent
chain linked by phenoxy ether band in the molecular spa-
cer, due to the addition of a flexible alkyl segment and a
weak hydrophobic force between alkyl chains, it can also
stack and form some belt-like aggregates with a stacking
length of 3.23 nm in nitrobenzene, as shown in Figure 7d.
Moreover, for CH-C2 and CH-N1, the inefficient or poor
gelation behaviors in the present solvents may be mainly
attributed to the too rigid or too flexible spacers in
molecular skeletons, which cannot cause enough
intermolecular forces to make the molecules align
and stack in an organized way to form various nano-
structures. Meanwhile, it should be noted that this
phenomenon can be compared with the results of our
recent works [24,25,48]. Therein, functionalized imide
derivatives with the substituent groups of cholesteryl,
azobenzene, luminol, and benzimidazole/benzothiazole
residue can have a profound effect on the gelation
abilities and the as-formed nanostructures of the
studied compounds. For the present gelators, the ex-
perimental data showed that the spacers in the
molecular skeleton have played a crucial role in the
gelation behavior of all gelators in various organic
solvents. Suitable combination of flexible/rigid seg-
ments in molecular spacers in the present cholesteryl
gelators is favorable for the gelation of organic
solvents. Now, the drug release behaviors generated
by the present xerogels in the mixture of Congo red
are under investigation to display the relationship between
the molecular structures of as-formed nanostructures
and their properties.
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Conclusions

Five bolaform cholesteryl imide derivatives with different
spacers have been synthesized. Their gelation behaviors
in 23 kinds of organic solvents have been investigated.
The formed organogels can be regulated by changing
the flexible/rigid segments in spacers and organic
solvents. Suitable combination of flexible/rigid segments
in molecular spacers in the present cholesteryl gelators is
favorable for the gelation of organic solvents. Morpho-
logical studies revealed that the gelator molecules self-
assemble into different aggregates, from wrinkle and belt
to fiber with the change of spacers and solvents. Spectral
studies indicated that there existed different H-bond
formations between imide groups and assembly modes,
depending on the substituent spacers in molecular skele-
tons. The prepared nanostructures have wide perspectives
and many potential applications in nanoscience and
material fields due to their scientific values. These
results afford useful information for the design and
development of new versatile low molecular mass
organogelators and soft matter.
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