532 research outputs found

    Mechanisms of cell death pathway activation following drug-induced inhibition of mitochondrial complex I

    Get PDF
    AbstractRespiratory complex I inhibition by drugs and other chemicals has been implicated as a frequent mode of mitochondria-mediated cell injury. However, the exact mechanisms leading to the activation of cell death pathways are incompletely understood. This study was designed to explore the relative contributions to cell injury of three distinct consequences of complex I inhibition, i.e., impairment of ATP biosynthesis, increased formation of superoxide and, hence, peroxynitrite, and inhibition of the mitochondrial protein deacetylase, Sirt3, due to imbalance of the NADH/NAD+ ratio. We used the antiviral drug efavirenz (EFV) to model drug-induced complex I inhibition. Exposure of cultured mouse hepatocytes to EFV resulted in a rapid onset of cell injury, featuring a no-effect level at 30µM EFV and submaximal effects at 50µM EFV. EFV caused a concentration-dependent decrease in cellular ATP levels. Furthermore, EFV resulted in increased formation of peroxynitrite and oxidation of mitochondrial protein thiols, including cyclophilin D (CypD). This was prevented by the superoxide scavenger, Fe-TCP, or the peroxynitrite decomposition catalyst, Fe-TMPyP. Both ferroporphyrins completely protected from EFV-induced cell injury, suggesting that peroxynitrite contributed to the cell injury. Finally, EFV increased the NADH/NAD+ ratio, inhibited Sirt3 activity, and led to hyperacetylated lysine residues, including those in CypD. However, hepatocytes isolated from Sirt3-null mice were protected against 40µM EFV as compared to their wild-type controls. In conclusion, these data are compatible with the concept that chemical inhibition of complex I activates multiple pathways leading to cell injury; among these, peroxynitrite formation may be the most critical

    Multiple NSAID-Induced Hits Injure the Small Intestine: Underlying Mechanisms and Novel Strategies

    Get PDF
    Nonsteroidal anti-inflammatory drugs (NSAIDs) can cause serious gastrointestinal (GI) injury including jejunal/ileal mucosal ulceration, bleeding, and even perforation in susceptible patients. The underlying mechanisms are largely unknown, but they are distinct from those related to gastric injury. Based on recent insights from experimental models, including genetics and pharmacology in rodents typically exposed to diclofenac, indomethacin, or naproxen, we propose a multiple-hit pathogenesis of NSAID enteropathy. The multiple hits start with an initial pharmacokinetic determinant caused by vectorial hepatobiliary excretion and delivery of glucuronidated NSAID or oxidative metabolite conjugates to the distal small intestinal lumen, where bacterial β-glucuronidase produces critical aglycones. The released aglycones are then taken up by enterocytes and further metabolized by intestinal cytochrome P450s to potentially reactive intermediates. The “first hit” is caused by the NSAID and/or oxidative metabolites that induce severe endoplasmic reticulum stress or mitochondrial stress and lead to cell death. The “second hit” is created by the significant subsequent inflammatory response that would follow such a first-hit injury. Based on these putative mechanisms, strategies have been developed to protect the enterocytes from being exposed to the parent NSAID and/or oxidative metabolites. Among these, a novel strategy already demonstrated in a murine model is the selective disruption of bacteria-specific β-glucuronidases with a novel small molecule inhibitor that does not harm the bacteria and that alleviates NSAID-induced enteropathy. Such mechanism-based strategies require further investigation but provide potential avenues for the alleviation of the GI toxicity caused by multiple NSAID hits

    Pharmacologic Targeting of Bacterial  -Glucuronidase Alleviates Nonsteroidal Anti-Inflammatory Drug-Induced Enteropathy in Mice

    Get PDF
    Small intestinal mucosal injury is a frequent adverse effect caused by nonsteroidal anti-inflammatory drugs (NSAIDs). The underlying mechanisms are not completely understood, but topical (luminal) effects have been implicated. Many carboxylic acid-containing NSAIDs, including diclofenac (DCF), are metabolized to acyl glucuronides (AGs), and/or ether glucuronides after ring hydroxylation, and exported into the biliary tree. In the gut, these conjugates are cleaved by bacterial β-glucuronidase, releasing the potentially harmful aglycone. We first confirmed that DCF-AG was an excellent substrate for purified Escherichia coli β-d-glucuronidase. Using a previously characterized novel bacteria-specific β-glucuronidase inhibitor (Inhibitor-1), we then found that the enzymatic hydrolysis of DCF-AG in vitro was inhibited concentration dependently (IC50 ∼164 nM). We next hypothesized that pharmacologic inhibition of bacterial β-glucuronidase would reduce exposure of enterocytes to the aglycone and, as a result, alleviate enteropathy. C57BL/6J mice were administered an ulcerogenic dose of DCF (60 mg/kg i.p.) with or without oral pretreatment with Inhibitor-1 (10 μg per mouse, b.i.d.). Whereas DCF alone caused the formation of numerous large ulcers in the distal parts of the small intestine and increased (2-fold) the intestinal permeability to fluorescein isothiocyanate-dextran, Inhibitor-1 cotreatment significantly alleviated mucosal injury and reduced all parameters of enteropathy. Pharmacokinetic profiling of DCF plasma levels in mice revealed that Inhibitor-1 coadministration did not significantly alter the Cmax, half-life, or area under the plasma concentration versus time curve of DCF. Thus, highly selective pharmacologic targeting of luminal bacterial β-d-glucuronidase by a novel class of small-molecule inhibitors protects against DCF-induced enteropathy without altering systemic drug exposure

    Bacterial β-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: mode of action and pharmacokinetics

    Get PDF
    1.  We have previously demonstrated that a small molecule inhibitor of bacterial β-glucuronidase (Inh-1; [1-((6,8-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)-3-(4-ethoxyphenyl)-1-(2-hydroxyethyl)thiourea]) protected mice against diclofenac (DCF)-induced enteropathy. Here we report that Inh-1 was equally protective against small intestinal injury induced by other carboxylic acid-containing non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin (10 mg/kg, ip) and ketoprofen (100 mg/kg, ip). 2.  Inh-1 provided complete protection if given prior to DCF (60 mg/kg, ip), and partial protection if administered 3-h post-DCF, suggesting that the temporal window of mucosal protection can be extended for drugs undergoing extensive enterohepatic circulation. 3.  Pharmacokinetic analysis of Inh-1 revealed an absolute bioavailability (F) of 21% and a short t1/2 of <1 h. This low F was shown to be due to hepatic first-pass metabolism, as confirmed with the pan-CYP inhibitor, 1-aminobenzotriazole. 4.  Using the fluorescent probe 5 (and 6)-carboxy-2',7'-dichlorofluorescein, we demonstrated that Inh-1 did not interfere with hepatobiliary export of glucuronides in gall bladder-cannulated mice. 5.  These data are compatible with the hypothesis that pharmacological inhibition of bacterial β-glucuronidase-mediated cleavage of NSAID glucuronides in the small intestinal lumen can protect against NSAID-induced enteropathy caused by locally high concentrations of NSAID aglycones

    Characterization of a functional C3A liver spheroid model

    Get PDF
    More predictive in vitro liver models are a critical requirement for preclinical screening of compounds demonstrating hepatotoxic liability. 3D liver spheroids have been shown to have an enhanced functional lifespan compared to 2D monocultures; however a detailed characterisation of spatiotemporal function and structure of spheroids still needs further attention before widespread use in industry. We have developed and characterized the structure and function of a 3D liver spheroid model formed from C3A hepatoma cells. Spheroids were viable and maintained a compact in vivo-like structure with zonation features for up to 32 days. MRP2 and Pgp transporters had polarised expression on the canalicular membrane of cells in the spheroids and were able to functionally transport CMFDA substrate into these canalicular structures. Spheroids expressed CYP2E1 and were able to synthesise and secrete albumin and urea to a higher degree than monolayer C3A cultures. Penetration of doxorubicin throughout the spheroid core was demonstrated. Spheroids showed increased susceptibility to hepatotoxins when compared to 2D cultures, with acetaminophen having an IC50 of 7.2 mM in spheroids compared to 33.8 mM in monolayer culture. To conclude, we developed an alternative method for creating C3A liver spheroids and demonstrated cellular polarisation and zonation, as well as superior liver-specific functionality and more sensitive toxicological response compared to standard 2D liver models, confirming a more in vivo-like liver model

    Inroads to Predict in Vivo Toxicology—An Introduction to the eTOX Project

    Get PDF
    There is a widespread awareness that the wealth of preclinical toxicity data that the pharmaceutical industry has generated in recent decades is not exploited as efficiently as it could be. Enhanced data availability for compound comparison (“read-across”), or for data mining to build predictive tools, should lead to a more efficient drug development process and contribute to the reduction of animal use (3Rs principle). In order to achieve these goals, a consortium approach, grouping numbers of relevant partners, is required. The eTOX (“electronic toxicity”) consortium represents such a project and is a public-private partnership within the framework of the European Innovative Medicines Initiative (IMI). The project aims at the development of in silico prediction systems for organ and in vivo toxicity. The backbone of the project will be a database consisting of preclinical toxicity data for drug compounds or candidates extracted from previously unpublished, legacy reports from thirteen European and European operation-based pharmaceutical companies. The database will be enhanced by incorporation of publically available, high quality toxicology data. Seven academic institutes and five small-to-medium size enterprises (SMEs) contribute with their expertise in data gathering, database curation, data mining, chemoinformatics and predictive systems development. The outcome of the project will be a predictive system contributing to early potential hazard identification and risk assessment during the drug development process. The concept and strategy of the eTOX project is described here, together with current achievements and future deliverables

    Natural Terpenes Prevent Mitochondrial Dysfunction, Oxidative Stress and Release of Apoptotic Proteins during Nimesulide-Hepatotoxicity in Rats

    Get PDF
    Nimesulide, an anti-inflammatory and analgesic drug, is reported to cause severe hepatotoxicity. In this study, molecular mechanisms involved in deranged oxidant-antioxidant homeostasis and mitochondrial dysfunction during nimesulide-induced hepatotoxicity and its attenuation by plant derived terpenes, camphene and geraniol has been explored in male Sprague-Dawley rats. Hepatotoxicity due to nimesulide (80 mg/kg BW) was evident from elevated SGPT, SGOT, bilirubin and histo-pathological changes. Antioxidants and key redox enzymes (iNOS, mtNOS, Cu/Zn-SOD, Mn-SOD, GPx and GR) were altered significantly as assessed by their mRNA expression, Immunoblot analysis and enzyme activities. Redox imbalance along with oxidative stress was evident from decreased NAD(P)H and GSH (56% and 74% respectively; P<0.001), increased superoxide and secondary ROS/RNS generation along with oxidative damage to cellular macromolecules. Nimesulide reduced mitochondrial activity, depolarized mitochondria and caused membrane permeability transition (MPT) followed by release of apoptotic proteins (AIF; apoptosis inducing factor, EndoG; endonuclease G, and Cyto c; cytochrome c). It also significantly activated caspase-9 and caspase-3 and increased oxidative DNA damage (level of 8-Oxoguanine glycosylase; P<0.05). A combination of camphene and geraniol (CG; 1∶1), when pre-administered in rats (10 mg/kg BW), accorded protection against nimesulide hepatotoxicity in vivo, as evident from normalized serum biomarkers and histopathology. mRNA expression and activity of key antioxidant and redox enzymes along with oxidative stress were also normalized due to CG pre-treatment. Downstream effects like decreased mitochondrial swelling, inhibition in release of apoptotic proteins, prevention of mitochondrial depolarization along with reduction in oxidized NAD(P)H and increased mitochondrial electron flow further supported protective action of selected terpenes against nimesulide toxicity. Therefore CG, a combination of natural terpenes prevented nimesulide induced cellular damage and ensuing hepatotoxicity

    Translating Clinical Findings into Knowledge in Drug Safety Evaluation - Drug Induced Liver Injury Prediction System (DILIps)

    Get PDF
    Drug-induced liver injury (DILI) is a significant concern in drug development due to the poor concordance between preclinical and clinical findings of liver toxicity. We hypothesized that the DILI types (hepatotoxic side effects) seen in the clinic can be translated into the development of predictive in silico models for use in the drug discovery phase. We identified 13 hepatotoxic side effects with high accuracy for classifying marketed drugs for their DILI potential. We then developed in silico predictive models for each of these 13 side effects, which were further combined to construct a DILI prediction system (DILIps). The DILIps yielded 60–70% prediction accuracy for three independent validation sets. To enhance the confidence for identification of drugs that cause severe DILI in humans, the “Rule of Three” was developed in DILIps by using a consensus strategy based on 13 models. This gave high positive predictive value (91%) when applied to an external dataset containing 206 drugs from three independent literature datasets. Using the DILIps, we screened all the drugs in DrugBank and investigated their DILI potential in terms of protein targets and therapeutic categories through network modeling. We demonstrated that two therapeutic categories, anti-infectives for systemic use and musculoskeletal system drugs, were enriched for DILI, which is consistent with current knowledge. We also identified protein targets and pathways that are related to drugs that cause DILI by using pathway analysis and co-occurrence text mining. While marketed drugs were the focus of this study, the DILIps has a potential as an evaluation tool to screen and prioritize new drug candidates or chemicals, such as environmental chemicals, to avoid those that might cause liver toxicity. We expect that the methodology can be also applied to other drug safety endpoints, such as renal or cardiovascular toxicity
    corecore