83 research outputs found
International biathlon season during the COVID-19 pandemic was based on frequent on-site PCR-testing protocol with rapid result management
The resumption of professional sports during the COVID-19 pandemic has been described in team sports but less in individual sports. The International Biathlon Union implemented a COVID-19 concept for the 2020–2021 season aimed to mitigate the risks of transmission by rules designated for the professional biathlon environment. The “bubble” model was based on regular reverse transcript polymerase chain reaction (PCR) testing with rapid results and efficient result management protocol. The objective of this study was report incidence and transmission of SARS-CoV-2 among professional biathletes and staff undergoing frequent PCR testing and risk reduction measures during the international season 2020–2021. The efficiency of risk mitigation measures was also evaluated based on the incidence data. During the 4-month season, altogether 22,182 SARS-CoV-2 PCR tests were conducted on all individuals participating in international biathlon season (athletes, team staff and organizing committee). Ninety-six (0.4%) PCR tests were positive and 30% of the positive PCR tests were considered “persistent positive” following recovery from a recent COVID-19 infection. No transmission events were detected following contact with “persistent positive” cases during the season. A great majority of the positive PCR tests were recorded during the first days after arrival in the “bubble”, often in the first entry test taken by the on-site laboratory. In conclusion, a “bubble model” based on frequent PCR testing and hygiene rules was efficient in keeping the infection rate low. The competition activity including international travel was safe, and most of the infections seemed to originate from outside of the “bubble”.Peer Reviewe
Identification of subtelomeric genomic imbalances and breakpoint mapping with quantitative PCR in 296 individuals with congenital defects and/or mental retardation
<p>Abstract</p> <p>Background</p> <p>Submicroscopic imbalances in the subtelomeric regions of the chromosomes are considered to play an important role in the aetiology of mental retardation (MR). The aim of the study was to evaluate a quantitative PCR (qPCR) protocol established by Boehm et al. (2004) in the clinical routine of subtelomeric testing.</p> <p>Results</p> <p>296 patients with MR and a normal karyotype (500–550 bands) were screened for subtelomeric imbalances by using qPCR combined with SYBR green detection. In total, 17 patients (5.8%) with 20 subtelomeric imbalances were identified. Six of the aberrations (2%) were classified as causative for the symptoms, because they occurred either <it>de novo </it>in the patients (5 cases) or the aberration were be detected in the patient and an equally affected parent (1 case). The extent of the deletions ranged from 1.8 to approximately 10 Mb, duplications were 1.8 to approximately 5 Mb in size. In 6 patients, the copy number variations (CNVs) were rated as benign polymorphisms, and the clinical relevance of these CNVs remains unclear in 5 patients (1.7%). Therefore, the overall frequency of clinically relevant imbalances ranges between 2% and 3.7% in our cohort.</p> <p>Conclusion</p> <p>This study illustrates that the qPCR/SYBR green technique represents a rapid and versatile method for the detection of subtelomeric imbalances and the option to map the breakpoint. Thus, this technique is highly suitable for genotype/phenotype studies in patients with MR/developmental delay and/or congenital defects.</p
Modeling the variations of Dose Rate measured by RAD during the first MSL Martian year: 2012-2014
The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's
(MSL) rover Curiosity, measures the {energy spectra} of both energetic charged
and neutral particles along with the radiation dose rate at the surface of
Mars. With these first-ever measurements on the Martian surface, RAD observed
several effects influencing the galactic cosmic ray (GCR) induced surface
radiation dose concurrently: [a] short-term diurnal variations of the Martian
atmospheric pressure caused by daily thermal tides, [b] long-term seasonal
pressure changes in the Martian atmosphere, and [c] the modulation of the
primary GCR flux by the heliospheric magnetic field, which correlates with
long-term solar activity and the rotation of the Sun. The RAD surface dose
measurements, along with the surface pressure data and the solar modulation
factor, are analysed and fitted to empirical models which quantitatively
demonstrate} how the long-term influences ([b] and [c]) are related to the
measured dose rates. {Correspondingly we can estimate dose rate and dose
equivalents under different solar modulations and different atmospheric
conditions, thus allowing empirical predictions of the Martian surface
radiation environment
Understanding past climatic and hydrological variability in the Mediterranean from Lake Prespa sediment isotope and geochemical record over the Last Glacial cycle
Here we present stable isotope and geochemical data from Lake Prespa (Macedonia/Albania border) over the Last Glacial cycle (Marine Isotope Stages 5–1) and discuss past lake hydrology and climate (TIC, oxygen and carbon isotopes), as well as responses to climate of terrestrial and aquatic vegetation (TOC, Rock Eval pyrolysis, carbon isotopes, pollen). The Lake Prespa sediments broadly fall into 5 zones based on their sedimentology, geochemistry, palynology and the existing chronology. The Glacial sediments suggest low supply of carbon to the lake, but high summer productivity; intermittent siderite layers suggest that although the lake was likely to have mixed regularly leading to enhanced oxidation of organic matter, there must have been within sediment reducing conditions and methanogenesis. MIS 5 and 1 sediments suggest much more productivity, higher rates of organic material preservation possibly due to more limited mixing with longer periods of oxygen-depleted bottom waters. We also calculated lakewater δ18O from siderite (authigenic/Glacial) and calcite (endogenic/Holocene) and show much lower lakewater δ18O values in the Glacial when compared to the Holocene, suggesting the lake was less evaporative in the Glacial, probably as a consequence of cooler summers and longer winter ice cover. In the Holocene the oxygen isotope data suggests general humidity, with just 2 marked arid phases, features observed in other Eastern and Central Mediterranean lakes
High-density lipoprotein cholesterol, coronary artery disease, and cardiovascular mortality
Aims High-density lipoprotein (HDL) cholesterol is a strong predictor of cardiovascular mortality. This work aimed to investigate whether the presence of coronary artery disease (CAD) impacts on its predictive value. Methods and results We studied 3141 participants (2191 males, 950 females) of the LUdwigshafen RIsk and Cardiovascular health (LURIC) study. They had a mean ± standard deviation age of 62.6 ± 10.6 years, body mass index of 27.5 ± 4.1 kg/m², and HDL cholesterol of 38.9 ± 10.8 mg/dL. The cohort consisted of 699 people without CAD, 1515 patients with stable CAD, and 927 patients with unstable CAD. The participants were prospectively followed for cardiovascular mortality over a median (inter-quartile range) period of 9.9 (8.7-10.7) years. A total of 590 participants died from cardiovascular diseases. High-density lipoprotein cholesterol by tertiles was inversely related to cardiovascular mortality in the entire cohort (P = 0.009). There was significant interaction between HDL cholesterol and CAD in predicting the outcome (P = 0.007). In stratified analyses, HDL cholesterol was strongly associated with cardiovascular mortality in people without CAD [3rd vs. 1st tertile: HR (95% CI) = 0.37 (0.18-0.74), P = 0.005], but not in patients with stable [3rd vs. 1st tertile: HR (95% CI) = 0.81 (0.61-1.09), P = 0.159] and unstable [3rd vs. 1st tertile: HR (95% CI) = 0.91 (0.59-1.41), P = 0.675] CAD. These results were replicated by analyses in 3413 participants of the AtheroGene cohort and 5738 participants of the ESTHER cohort, and by a meta-analysis comprising all three cohorts. Conclusion The inverse relationship of HDL cholesterol with cardiovascular mortality is weakened in patients with CAD. The usefulness of considering HDL cholesterol for cardiovascular risk stratification seems limited in such patient
Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression
Uromodulin (UMOD) mutations are responsible for three autosomal dominant tubulo-interstitial nephropathies including medullary cystic kidney disease type 2 (MCKD2), familial juvenile hyperuricemic nephropathy and glomerulocystic kidney disease. Symptoms include renal salt wasting, hyperuricemia, gout, hypertension and end-stage renal disease. MCKD is part of the ‘nephronophthisis-MCKD complex', a group of cystic kidney diseases. Both disorders have an indistinguishable histology and renal cysts are observed in either. For most genes mutated in cystic kidney disease, their proteins are expressed in the primary cilia/basal body complex. We identified seven novel UMOD mutations and were interested if UMOD protein was expressed in the primary renal cilia of human renal biopsies and if mutant UMOD would show a different expression pattern compared with that seen in control individuals. We demonstrate that UMOD is expressed in the primary cilia of renal tubules, using immunofluorescent studies in human kidney biopsy samples. The number of UMOD-positive primary cilia in UMOD patients is significantly decreased when compared with control samples. Additional immunofluorescence studies confirm ciliary expression of UMOD in cell culture. Ciliary expression of UMOD is also confirmed by electron microscopy. UMOD localization at the mitotic spindle poles and colocalization with other ciliary proteins such as nephrocystin-1 and kinesin family member 3A is demonstrated. Our data add UMOD to the group of proteins expressed in primary cilia, where mutations of the gene lead to cystic kidney diseas
Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes.
peer reviewedIn the mammalian brain TRPC channels, a family of Ca2+-permeable cation channels, are involved in a variety of processes from neuronal growth and synapse formation to transmitter release, synaptic transmission and plasticity. The molecular appearance and operation of native TRPC channels, however, remained poorly understood. Here, we used high-resolution proteomics to show that TRPC channels in the rodent brain are macro-molecular complexes of more than 1 MDa in size that result from the co-assembly of the tetrameric channel core with an ensemble of interacting proteins (interactome). The core(s) of TRPC1-, C4-, and C5-containing channels are mostly heteromers with defined stoichiometries for each subtype, whereas TRPC3, C6, and C7 preferentially form homomers. In addition, TRPC1/C4/C5 channels may co-assemble with the metabotropic glutamate receptor mGluR1, thus guaranteeing both specificity and reliability of channel activation via the phospholipase-Ca2+ pathway. Our results unveil the subunit composition of native TRPC channels and resolve the molecular details underlying their activation
LTP-triggered cholesterol redistribution activates Cdc42 and drives AMPA receptor synaptic delivery
Neurotransmitter receptor trafficking during synaptic plasticity requires the concerted action of multiple signaling pathways and the protein transport machinery. However, little is known about the contribution of lipid metabolism during these processes. In this paper, we addressed the question of the role of cholesterol in synaptic changes during long-term potentiation (LTP). We found that N-methyl-d-aspartate-type glutamate receptor (NMDAR) activation during LTP induction leads to a rapid and sustained loss or redistribution of intracellular cholesterol in the neuron. A reduction in cholesterol, in turn, leads to the activation of Cdc42 and the mobilization of GluA1-containing α-amino-3-hydroxy-5- methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) from Rab11-recycling endosomes into the synaptic membrane, leading to synaptic potentiation. This process is accompanied by an increase of NMDAR function and an enhancement of LTP. These results imply that cholesterol acts as a sensor of NMDAR activation and as a trigger of downstream signaling to engage small GTPase (guanosine triphosphatase) activation and AMPAR synaptic delivery during LTP.Peer Reviewe
Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection
The interferon-γ (IFN-γ)-inducible immunity-related GTPase (IRG), Irgm1, plays an essential role in restraining activation of the IRG pathogen resistance system. However, the loss of Irgm1 in mice also causes a dramatic but unexplained susceptibility phenotype upon infection with a variety of pathogens, including many not normally controlled by the IRG system. This phenotype is associated with lymphopenia, hemopoietic collapse, and death of the mouse.Deutscher Akademischer Austausch Dienst (DAAD); International Graduate School in Development Health
and Disease (IGS-DHD); Deutsche For-schungsgemeinschaft (SFBs 635, 670, 680); Max-Planck-Gesellschaft (Max Planck Fellowship)
The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis
Oriented cell behaviors likely have a more important role in limb bud elongation during development than previously suggested by the “growth-based morphogenesis” hypothesis
- …