59 research outputs found

    Examination of the accuracy of SHRIMP U–Pb geochronology based on samples dated by both SHRIMP and CA-TIMS

    Get PDF
    Estimations of the reproducibility of U–Pb ages from SHRIMP (Sensitive High-Resolution Ion MicroProbe) instruments are based on data from studies that are nearly 2 decades old. Since that time, refinement of analytical procedures and operational improvements have reduced the historically identified uncertainties of SHRIMP U–Pb analysis. This paper investigates 36 SHRIMP thermal ionisation mass spectrometry (TIMS) double-dated “real-world” geologic samples from a variety of igneous rock types to better understand both geological and analytical sources of disagreement between the two dating methods. Geoscience Australia's (GA) use of high-precision chemical abrasion thermal ionisation mass spectrometry (CA-TIMS) for chronostratigraphy in Australian sedimentary basins has produced a substantial selection of precisely dated zircons, which we can use to cross-correlate the SHRIMP and CA-TIMS ages throughout the Phanerozoic. A total of 33 of the 36 ages were reported with external SHRIMP uncertainties less than 1 % (95 % confidence). Six of eight cases where the CA-TIMS age was outside the SHRIMP uncertainty envelope were in samples where the 95 % confidence interval of the reported SHRIMP age was below 0.66 % uncertainty, suggesting that SHRIMP analyses of untreated zircon with smaller uncertainties are probably overoptimistic. The mean age offset between SHRIMP and TIMS ages is 0.095 %, but the distribution appears bimodal. Geological explanations for age discrepancies between SHRIMP and CA-TIMS are suggested by considering intrusive and extrusive age results separately. All but one sample where the SHRIMP age is more than 0.25 % older are volcanic. This offset could be explained by the better single-grain age resolution of TIMS, allowing identification and exclusion of antecrysts from the eruptive population, while SHRIMP does not have a sufficient single-grain precision to deconvolve these populations – leading to an apparent older SHRIMP age. In contrast, SHRIMP ages from plutonic rocks – particularly plutonic rocks from the early Paleozoic – are typically younger than the CA-TIMS ages from the same samples, most likely reflecting Pb loss from non-chemically abraded SHRIMP zircons, while chemical abrasion of zircons prior to TIMS analysis destroyed or corrected these areas of Pb loss.</p

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure

    Monazite trumps zircon: applying SHRIMP U–Pb geochronology to systematically evaluate emplacement ages of leucocratic, low-temperature granites in a complex Precambrian orogen

    Get PDF
    Although zircon is the most widely used geochronometer to determine the crystallisation ages of granites, it can be unreliable for low-temperature melts because they may not crystallise new zircon. For leucocratic granites U–Pb zircon dates, therefore, may reflect the ages of the source rocks rather than the igneous crystallisation age. In the Proterozoic Capricorn Orogen of Western Australia, leucocratic granites are associated with several pulses of intracontinental magmatism spanning ~800 million years. In several instances, SHRIMP U–Pb zircon dating of these leucocratic granites either yielded ages that were inconclusive (e.g., multiple concordant ages) or incompatible with other geochronological data. To overcome this we used SHRIMP U–Th–Pb monazite geochronology to obtain igneous crystallisation ages that are consistent with the geological and geochronological framework of the orogen. The U–Th–Pb monazite geochronology has resolved the time interval over which two granitic supersuites were emplaced; a Paleoproterozoic supersuite thought to span ~80 million years was emplaced in less than half that time (1688–1659 Ma) and a small Meso- to Neoproterozoic supersuite considered to have been intruded over ~70 million years was instead assembled over ~130 million years and outlasted associated regional metamorphism by ~100 million years. Both findings have consequences for the duration of associated orogenic events and any estimates for magma generation rates. The monazite geochronology has contributed to a more reliable tectonic history for a complex, long-lived orogen. Our results emphasise the benefit of monazite as a geochronometer for leucocratic granites derived by low-temperature crustal melting and are relevant to other orogens worldwide

    Sediment routing and basin evolution in Proterozoic to Mesozoic east Gondwana: A case study from southern Australia

    Get PDF
    Sedimentary rocks along the southern margin of Australia host an important record of the break-up history of east Gondwana, as well as fragments of a deeper geological history, which collectively help inform the geological evolution of a vast and largely underexplored region. New drilling through Cenozoic cover has allowed examination of the Cretaceous rift-related Madura Shelf sequence (Bight Basin), and identification of two new stratigraphic units beneath the shelf; the possibly Proterozoic Shanes Dam Conglomerate and the interpreted Palaeozoic southern Officer Basin unit, the Decoration Sandstone. Recognition of these new units indicates an earlier basinal history than previously known. Lithostratigraphy of the new drillcore has been integrated with that published from onshore and offshore cores to present isopach maps of sedimentary cover on the Madura Shelf. New palynological data demonstrate progression from more localised freshwater-brackish fluvio-lacustrine clastics in the early Cretaceous (Foraminisporis wonthaggiensis – Valanginian to Barremian) to widespread topography-blanketing, fully marine, glauconitic mudrocks in the mid Cretaceous (Endoceratium ludbrookiae – Albian). Geochronology and Hf-isotope geochemistry show detrital zircon populations from the Madura Shelf are comparable to those from the southern Officer Basin, as well as Cenozoic shoreline and palaeovalley sediments in the region. The detrital zircon population from the Shanes Dam Conglomerate is defined by a unimodal ~1400 Ma peak, which correlates with directly underlying crystalline basement of the Madura Province. Peak ages of ~1150 Ma and ~1650 Ma dominate the age spectra of all other samples, indicating a stable sediment reservoir through much of the Phanerozoic, with sediments largely sourced from the Albany-Fraser Orogen and Musgrave Province (directly and via multiple recycling events). The Madura Shelf detrital zircon population differs from published data for the Upper CretaceousCeduna Delta to the east, indicating significant differences in sediment provenance and routing between the Ceduna Sub-basin and central Bight Basin

    Detrital zircon age and provenance constraints on late Paleozoic ice-sheet growth and dynamics in Western and Central Australia

    Get PDF
    U–Pb dating and Hf-isotope provenance analysis of detrital zircons from the glaciogenic lower Permian Grant Group of the Canning Basin indicate sources principally from basement terranes in central Australia, with subordinate components from terranes to the south and north. Integrating these data with field outcrop and subsurface evidence for ice sheets, including glacial valleys and striated pavements along the southern and northern margins of the basin, suggests that continental ice sheets extended over several Precambrian upland areas of western and central Australia during the late Paleozoic ice age (LPIA). The youngest zircons constrain the maximum age for contemporaneous ice sheet development to the late Carboniferous (Kasimovian), whereas palynology provides a minimum age of early Permian (Asselian–Sakmarian). Considering the palynological age of the Grant Group within the context of regional and global climate proxies, the main phase of continental ice sheet growth was possibly in the Ghzelian–Asselian. The presence of ice sheets older than Kasimovian in western and central Australia remains difficult to prove given a regional gap in deposition possibly covering the mid-Bashkirian to early Ghzelian within the main depocentres and even larger along basin margins, and the poor evidence for older Carboniferous glacial facies. There is also no evidence for extensive glacial facies younger than mid-Sakmarian in this region as opposed to eastern Australia where the youngest regional glacial phase was Guadalupian
    • …
    corecore