72 research outputs found

    Wild meat trade over the last 45 years in the Peruvian Amazon

    Get PDF
    The trade in wild meat is an important economic component of rural people's livelihoods, but it has been perceived to be among the main causes of the decline of wildlife species. Recently, the COVID-19 pandemic has brought to light an additional concern of wildlife markets as a major human-health challenge. We analyzed data from the largest longitudinal monitoring (1973–2018) of the most important urban wild-meat markets in Iquitos, Peru, to examine the trends in and impacts of these markets on people's livelihoods. Over the last 45 years, wild meat sales increased at a rate of 6.4 t/year (SD 2.17), paralleling urban population growth. Wild meat sales were highest in 2018 (442 t), contributing US$2.6 million (0.76%) to the regional gross domestic product. Five species of ungulates and rodents accounted for 88.5% of the amount of biomass traded. Vulnerable and Endangered species represented 7.0% and 0.4% of individuals sold, respectively. Despite growth in sales, the contribution of wild meat to overall urban diet was constant: 1–2%/year of total meat consumed. This result was due to greater availability and higher consumption of cheaper meats (e.g., in 2018, poultry was 45.8% cheaper and was the most consumed meat) coupled with the lack of economic incentives to harvest wild meat species in rural areas. Most wild meat was sold salted or smoked, reducing the likelihood of foodborne diseases. Community-based wildlife management plans and the continued trade bans on primates and threatened taxa may avoid biodiversity loss. Considering the recent COVID-19 pandemic, future management plans should include potential viral hosts and regulation and enforcement of hygiene practices in wild-meat markets

    Assessing the Minimum Sampling Effort Required to Reliably Monitor Wild Meat Trade in Urban Markets

    Get PDF
    The trade of wild meat generates great economic returns for local communities but at a cost of increasing harvest rates of game species. Monitoring wild meat trade in urban markets is a low-cost method that can be employed to assess impacts of hunting on game populations. Nevertheless, wild meat markets are complex systems to monitor since they often vary over time, are illegal in some countries, and often vendors distrust researchers. We investigated the wild meat trade in the Belén market in Iquitos, Peru, the largest wild meat market in the Amazon, to estimate the minimum sampling effort required to obtain reliable estimates of the amounts and prices of wild meat sold. During two 12-month surveys (Sept. 2006–Aug. 2007, Sept. 2017–Aug. 2018), we conducted a total of 4,524 vendor interviews in 320 sample days. By modeling 10 possible scenarios in which sampling size and amount of meat traded varied, we calculated the accuracy and precision of different survey protocols. We found that in scenarios where the daily amount of wild meat on sale was between 40 and 650 kg, a sampling effort equal to or >2 sampling days per month provided good accuracy (>90%) and precision (>85%). However, in scenarios where wild meat traded was less frequent, or for rarer species, an effort of at least one interview per week is required. Vendor declaration of the daily amounts of meat sold was similar to the quantity on sale (accuracy = 98%), suggesting that sellers are aware of the volume of wild meat brought to market. To accurately monitor the trade of wild meat in urban markets, we recommend a minimum sampling effort, ranging from two interviews per week to two interviews per month, depending on the amount of wild meat traded; in other occasions, a punctual interview on meat sellers' perception may also be useful

    Wild Meat Is Still on the Menu: Progress in Wild Meat Research, Policy, and Practice from 2002 to 2020

    Get PDF
    Several hundred species are hunted for wild meat in the tropics, supporting the diets, customs, and livelihoods of millions of people. However, unsustainable hunting is one of the most urgent threats to wildlife and ecosystems worldwide and has serious ramifications for people whose subsistence and income are tied to wild meat. Over the past 18 years, although research efforts have increased, scientific knowledge has largely not translated into action. One major barrier to progress has been insufficient monitoring and evaluation, meaning that the effectiveness of interventions cannot be ascertained. Emerging issues include the difficulty of designing regulatory frameworks that disentangle the different purposes of hunting, the large scale of urban consumption, and the implications of wild meat consumption for human health. To address these intractable challenges, wepropose eight new recommendations for research and action for sustainable wild meat use, which would support the achievement of the United Nations Sustainable Development Goals.Additional co-authors: Donald Midoko Iponga, Nguyễn Văn Minh, Thais Q. Morcatty, Robert Mwinyihali, Robert Nasi, Vincent Nijman, Yaa Ntiamoa-Baidu, Freddy Pattiselanno, Carlos A. Peres, Madhu Rao, John G. Robinson, J. Marcus Rowcliffe, Ciara Stafford, Miriam Supuma, Francis Nchembi Tarla, Nathalie van Vliet, Michelle Wielan

    Identifying the science and technology dimensions of emerging public policy issues through horizon scanning

    Get PDF
    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security

    Ultrasound evaluation of fetal bone development in the collared (Pecari tajacu) and white-lipped peccary (Tayassu pecari)

    Get PDF
    El estudio del desarrollo fetal permite evaluar las diferentes estrategias adoptadas por las especies de mamíferos para maximizar la supervivencia neonatal. La locomoción autónoma es fundamental para que los recién nacidos realicen actividades de búsqueda de alimento y aumenta la supervivencia neonatal frente a la depredación. En este estudio, evaluamos el desarrollo óseo gestacional de 53 pecaríes de collar (CP, Pecari tajacu) y 61 pecaríes de labios blancos (WLP, Tayassu pecari), recolectados mediante la colaboración de cazadores de subsistencia en la Amazonia. La mineralización ósea y la biometría del esqueleto axial y apendicular se evaluaron mediante exámenes ecográficos, y se calculó el momento de los principales acontecimientos del desarrollo óseo en relación con la longitud dorsal total (TDL) y el porcentaje del período gestacional total (GP). Los primeros signos ecográficos de mineralización del esqueleto axial en CP y WLP se observaron en fetos de 3,4 cm (42 días de gestación, 30% GPCP) y 5,1 cm (51 días de gestación, 32% GPWLP). El desarrollo temprano del esqueleto apendicular se observó por la aparición sincrónica de la escápula mineralizada, el húmero, el radio, el cúbito, el ilion, el isquion, el fémur, la tibia y el peroné con un 36% de GPCP (50 días de gestación) y un 35% de GPWLP (56 días de gestación). El pubis estaba mineralizado en los fetos con un 55% de GPCP (75 días de gestación) y un 59% de GPWLP (94 días de gestación). La mineralización se observó en todos los huesos autópodos al 79% GPCP (109 días de gestación) y al 67% GPWLP (106 días de gestación). Todos los centros primarios de osificación de los huesos largos de las extremidades torácicas y pélvicas estaban mineralizados en los fetos avanzados (GPCP y GPWLP ≥75%). La rótula mineralizada no se observó en fetos avanzados de ninguna de las dos especies. Los centros de osificación secundaria aparecieron por primera vez en la epífisis distal del fémur en el CP (99 días de gestación, 72% GPCP) y en la epífisis distal del radio, fémur y tibia en el WLP (106 días de gestación, 67% GPWLP). Los fetos avanzados de CP y WLP presentaban el 60% (15/25) y el 68% (17/25) del total de centros de osificación secundaria observados presentes en el cerdo doméstico adulto, mientras que los recién nacidos del cerdo doméstico presentaban el 52% (13/25). El temprano desarrollo intrauterino del sistema esquelético en ambas especies de pecaríes sugiere una estrategia de desarrollo precoz, que probablemente se correlaciona con la capacidad neonatal para escapar de los depredadores y reduce la dependencia de los cuidados parentales.Revisión por pares

    Contribution of Distinct Homeodomain DNA Binding Specificities to Drosophila Embryonic Mesodermal Cell-Specific Gene Expression Programs

    Get PDF
    Homeodomain (HD) proteins are a large family of evolutionarily conserved transcription factors (TFs) having diverse developmental functions, often acting within the same cell types, yet many members of this family paradoxically recognize similar DNA sequences. Thus, with multiple family members having the potential to recognize the same DNA sequences in cis-regulatory elements, it is difficult to ascertain the role of an individual HD or a subclass of HDs in mediating a particular developmental function. To investigate this problem, we focused our studies on the Drosophila embryonic mesoderm where HD TFs are required to establish not only segmental identities (such as the Hox TFs), but also tissue and cell fate specification and differentiation (such as the NK-2 HDs, Six HDs and identity HDs (I-HDs)). Here we utilized the complete spectrum of DNA binding specificities determined by protein binding microarrays (PBMs) for a diverse collection of HDs to modify the nucleotide sequences of numerous mesodermal enhancers to be recognized by either no or a single subclass of HDs, and subsequently assayed the consequences of these changes on enhancer function in transgenic reporter assays. These studies show that individual mesodermal enhancers receive separate transcriptional input from both I–HD and Hox subclasses of HDs. In addition, we demonstrate that enhancers regulating upstream components of the mesodermal regulatory network are targeted by the Six class of HDs. Finally, we establish the necessity of NK-2 HD binding sequences to activate gene expression in multiple mesodermal tissues, supporting a potential role for the NK-2 HD TF Tinman (Tin) as a pioneer factor that cooperates with other factors to regulate cell-specific gene expression programs. Collectively, these results underscore the critical role played by HDs of multiple subclasses in inducing the unique genetic programs of individual mesodermal cells, and in coordinating the gene regulatory networks directing mesoderm development.National Institutes of Health (U.S.) (Grant R01 HG005287

    Large-scale population disappearances and cycling in the white-lipped peccary, a tropical forest mammal.

    Get PDF
    Many vertebrate species undergo population fluctuations that may be random or regularly cyclic in nature. Vertebrate population cycles in northern latitudes are driven by both endogenous and exogenous factors. Suggested causes of mysterious disappearances documented for populations of the Neotropical, herd-forming, white-lipped peccary (Tayassu pecari, henceforth "WLP") include large-scale movements, overhunting, extreme floods, or disease outbreaks. By analyzing 43 disappearance events across the Neotropics and 88 years of commercial and subsistence harvest data for the Amazon, we show that WLP disappearances are widespread and occur regularly and at large spatiotemporal scales throughout the species' range. We present evidence that the disappearances represent 7-12-year troughs in 20-30-year WLP population cycles occurring synchronously at regional and perhaps continent-wide spatial scales as large as 10,000-5 million km2. This may represent the first documented case of natural population cyclicity in a Neotropical mammal. Because WLP populations often increase dramatically prior to a disappearance, we posit that their population cycles result from over-compensatory, density-dependent mortality. Our data also suggest that the increase phase of a WLP cycle is partly dependent on recolonization from proximal, unfragmented and undisturbed forests. This highlights the importance of very large, continuous natural areas that enable source-sink population dynamics and ensure re-colonization and local population persistence in time and space

    Pooled sequencing of 531 genes in inflammatory bowel disease identifies an associated rare variant in BTNL2 and implicates other immune related genes.

    Get PDF
    The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn's disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10-10, OR = 2.3[95% CI = 1.75-3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis
    corecore