112 research outputs found

    Chandra's Close Encounter with the Disintegrating Comets 73P/2006 (Schwassmann--Wachmann--3) Fragment B and C/1999 S4 (LINEAR)

    Full text link
    On May 23, 2006 we used the ACIS-S instrument on the Chandra X-ray Observatory (CXO) to study the X-ray emission from the B fragment of comet 73P/2006 (Schwassmann-Wachmann 3) (73P/B). We obtained a total of 20 ks of CXO observation time of Fragment B, and also investigated contemporaneous ACE and SOHO solar wind physical data. The CXO data allow us to spatially resolve the detailed structure of the interaction zone between the solar wind and the fragment's coma at a resolution of ~ 1,000 km, and to observe the X-ray emission due to multiple comet--like bodies. We detect a change in the spectral signature with the ratio of the CV/OVII line increasing with increasing collisional opacity as predicted by Bodewits \e (2007). The line fluxes arise from a combination of solar wind speed, the species that populate the wind and the gas density of the comet. We are able to understand some of the observed X-ray morphology in terms of non-gravitational forces that act upon an actively outgassing comet's debris field. We have used the results of the Chandra observations on the highly fragmented 73P/B debris field to re-analyze and interpret the mysterious emission seen from comet C/1999 S4 (LINEAR) on August 1st, 2000, after the comet had completely disrupted. We find the physical situations to be similar in both cases, with extended X-ray emission due to multiple, small outgassing bodies in the field of view. Nevertheless, the two comets interacted with completely different solar winds, resulting in distinctly different spectra.Comment: accepted by ApJ, 44 Pages, including 4 tables and 14 figure

    Spectral Analysis of the Chandra Comet Survey

    Get PDF
    We present results of the analysis of cometary X-ray spectra with an extended version of our charge exchange emission model (Bodewits et al. 2006). We have applied this model to the sample of 8 comets thus far observed with the Chandra X-ray observatory and ACIS spectrometer in the 300-1000 eV range. The surveyed comets are C/1999 S4 (LINEAR), C/1999 T1 (McNaught-Hartley), C/2000 WM1 (LINEAR), 153P/2002 (Ikeya-Zhang), 2P/2003 (Encke), C/2001 Q4 (NEAT), 9P/2005 (Tempel 1) and 73P/2006-B (Schwassmann-Wachmann 3) and the observations include a broad variety of comets, solar wind environments and observational conditions. The interaction model is based on state selective, velocity dependent charge exchange cross sections and is used to explore how cometary X-ray emission depend on cometary, observational and solar wind characteristics. It is further demonstrated that cometary X-ray spectra mainly reflect the state of the local solar wind. The current sample of Chandra observations was fit using the constrains of the charge exchange model, and relative solar wind abundances were derived from the X-ray spectra. Our analysis showed that spectral differences can be ascribed to different solar wind states, as such identifying comets interacting with (I) fast, cold wind, (II), slow, warm wind and (III) disturbed, fast, hot winds associated with interplanetary coronal mass ejections. We furthermore predict the existence of a fourth spectral class, associated with the cool, fast high latitude wind.Comment: 16 pages, 16 figures, and 7 Tables; accepted A&A (Due to space limits, this version has lower resolution jpeg images.

    Rebirth of X-ray Emission from the Born-Again Planetary Nebula A 30

    Full text link
    The planetary nebula (PN) A30 is believed to have undergone a very late thermal pulse resulting in the ejection of knots of hydrogen-poor material. Using HST images we have detected the angular expansion of these knots and derived an age of 850+280-150 yr. To investigate the spectral and spatial properties of the soft X-ray emission detected by ROSAT, we have obtained Chandra and XMM-Newton observations of A30. The X-ray emission from A30 can be separated into two components: a point-source at the central star and diffuse emission associated with the hydrogen-poor knots and the cloverleaf structure inside the nebular shell. To help us assess the role of the current stellar wind in powering this X-ray emission, we have determined the stellar parameters of the central star of A 30 using a non-LTE model fit to its optical and UV spectrum. The spatial distribution and spectral properties of the diffuse X-ray emission is suggestive that it is generated by the post-born-again and present fast stellar winds interacting with the hydrogen-poor ejecta of the born-again event. This emission can be attributed to shock-heated plasma, as the hydrogen-poor knots are ablated by the stellar winds, under which circumstances the efficient mass-loading of the present fast stellar wind raises its density and damps its velocity to produce the observed diffuse soft X-rays. Charge transfer reactions between the ions of the stellar winds and material of the born-again ejecta has also been considered as a possible mechanism for the production of diffuse X-ray emission, and upper limits on the expected X-ray production by this mechanism have been derived. The origin of the X-ray emission from the central star of A 30 is puzzling: shocks in the present fast stellar wind and photospheric emission can be ruled out, while the development of a new, compact hot bubble confining the fast stellar wind seems implausible.Comment: 29 pages, 11 figures, 4 tables; accepted for publication by Ap

    Solar system X‐rays from charge exchange processes

    Full text link
    While X‐ray astronomy began in 1962 and has made fast progress since then in expanding our knowledge about where in the Universe X‐rays are generated by which processes, it took one generation before the importance of a fundamentally different process was recognized. This happened in our immediate neighborhood, when in 1996 comets were discovered as a new class of X‐ray sources, directing our attention to charge exchange reactions. Charge exchange is fundamentally different from other processes which lead to the generation of X‐rays, because the X‐rays are not produced by hot electrons, but by ions picking up electrons from cold gas. Thus it opens up a new window, making it possible to detect cool gas in X‐rays (like in comets), while all the other processes require extremely high temperatures or otherwise extreme conditions. After having been overlooked for a long time, the astrophysical importance of charge exchange for the generation of X‐rays is now receiving increased general attention. In our solar system, charge exchange induced X‐rays have now been established to originate in comets, in all the planets from Venus to Jupiter, and even in the heliosphere itself. In addition to that, evidence for this X‐ray emission mechanism has been found at various locations across the Universe. Here we summarize the current knowledge about solar system X‐rays resulting from charge exchange processes (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91180/1/324_ftp.pd

    Cometary charge exchange diagnostics in UV and X‐ray

    Full text link
    Since the initial discovery of cometary charge exchange emission, more than 20 comets have been observed with a variety of X‐ray and UV observatories. This observational sample offers a broad variety of comets, solar wind environments and observational conditions. It clearly demonstrates that solar wind charge exchange emission provides a wealth of diagnostics, which are visible as spatial, temporal, and spectral emission features. We review the possibilities and limitations of each of those in this contribution (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91138/1/335_ftp.pd

    Chandra Observations of Comets 8P/Tuttle and 17P/Holmes during Solar Minimum

    Full text link
    We present results for Chandra observations of comets, 17P/Holmes (17P) and 8P/Tuttle (8P). 17P was observed for 30 ksec right after its major outburst, on 31 Oct 2007 (10:07 UT) and comet 8P/Tuttle was observed in 2008 January for 47 ksec. During the two Chandra observations, 17P was producing at least 100 times more water than 8P but was 2.2 times further away from the Sun. Also, 17P is the first comet observed at high latitude (+19.1 degrees) during solar minimum, while 8P was observed at a lower solar latitude (3.4 degrees). The X-ray spectrum of 17P is unusually soft with little significant emission at energies above 500 eV. Depending on our choice of background, we derive a 300 to 1000 eV flux of 0.5 to 4.5 x 10^-13 ergs/cm2/sec, with over 90% of the emission in the 300 to 400 eV range. This corresponds to an X-ray luminosity between 0.4 to 3.3 x 10^15 ergs/sec. 17P's lack of X-rays in the 400 to 1000 eV range, in a simple picture, may be attributed to the polar solar wind, which is depleted in highly charged ions. 8P/Tuttle was much brighter, with an average count rate of 0.20 counts/s in the 300 to 1000 eV range. We derive an average X-ray flux in this range of 9.4 x 10^-13 ergs/cm2/sec and an X-ray luminosity for the comet of 1.7 x 10^14 ergs/sec. The light curve showed a dramatic decrease in flux of over 60% between observations on January 1st and 4th. When comparing outer regions of the coma to inner regions, its spectra showed a decrease in ratios of CVI/CV, OVIII/OVII, as predicted by recent solar wind charge exchange emission models. There are remarkable differences between the X-ray emission from these two comets, further demonstrating the qualities of cometary X-ray observations, and solar wind charge exchange emission in more general as a means of remote diagnostics of the interaction of astrophysical plasmas.Comment: 37 Pages, 8 Tables, 11 Figures; Accepted in Astrophysical Journal Supplement

    WISE/NEOWISE observations of Active Bodies in the Main Belt

    Get PDF
    We report results based on mid-infrared photometry of 5 active main belt objects (AMBOs) detected by the Wide-field Infrared Survey Explorer (WISE) spacecraft. Four of these bodies, P/2010 R2 (La Sagra), 133P/Elst-Pizarro, (596) Scheila, and 176P/LINEAR, showed no signs of activity at the time of the observations, allowing the WISE detections to place firm constraints on their diameters and albedos. Geometric albedos were in the range of a few percent, and on the order of other measured comet nuclei. P/2010 A2 was observed on April 2-3, 2010, three months after its peak activity. Photometry of the coma at 12 and 22 {\mu}m combined with ground-based visible-wavelength measurements provides constraints on the dust particle mass distribution (PMD), dlogn/dlogm, yielding power-law slope values of {\alpha} = -0.5 +/- 0.1. This PMD is considerably more shallow than that found for other comets, in particular inbound particle fluence during the Stardust encounter of comet 81P/Wild 2. It is similar to the PMD seen for 9P/Tempel 1 in the immediate aftermath of the Deep Impact experiment. Upper limits for CO2 & CO production are also provided for each AMBO and compared with revised production numbers for WISE observations of 103P/Hartley 2.Comment: 32 Pages, including 5 Figure

    P/2010A2 LINEAR - I: An impact in the Asteroid Main Belt

    Full text link
    Comet P/2010A2 LINEAR is a good candidate for membership with the Main Belt Comet family. It was observed with several telescopes (ESO NTT, La Silla; Gemini North, Mauna Kea; UH 2.2m, Mauna Kea) from 14 Jan. until 19 Feb. 2010 in order to characterize and monitor it and its very unusual dust tail, which appears almost fully detached from the nucleus; the head of the tail includes two narrow arcs forming a cross. The immediate surroundings of the nucleus were found dust-free, which allowed an estimate of the nucleus radius of 80-90m. A model of the thermal evolution indicates that such a small nucleus could not maintain any ice content for more than a few million years on its current orbit, ruling out ice sublimation dust ejection mechanism. Rotational spin-up and electrostatic dust levitations were also rejected, leaving an impact with a smaller body as the favoured hypothesis, and ruling out the cometary nature of the object. The impact is further supported by the analysis of the tail structure. Finston-Probstein dynamical dust modelling indicates the tail was produced by a single burst of dust emission. More advanced models, independently indicate that this burst populated a hollow cone with a half-opening angle alpha~40degr and with an ejection velocity v_max ~ 0.2m/s, where the small dust grains fill the observed tail, while the arcs are foreshortened sections of the burst cone. The dust grains in the tail are measured to have radii between a=1-20mm, with a differential size distribution proportional to a^(-3.44 +/- 0.08). The dust contained in the tail is estimated to at least 8x10^8kg, which would form a sphere of 40m radius. Analysing these results in the framework of crater physics, we conclude that a gravity-controlled crater would have grown up to ~100m radius, i.e. comparable to the size of the body. The non-disruption of the body suggest this was an oblique impact.Comment: 15 pages, 11 figures, in pres

    Airfall on Comet 67P/Churyumov-Gerasimenko

    Full text link
    We here study the transfer process of material from one hemisphere to the other (deposition of airfall material) on an active comet nucleus, specifically 67P/Churyumov-Gerasimenko. Our goals are to: 1) quantify the thickness of the airfall debris layers and how it depends on the location of the target area, 2) determine the amount of H2O\mathrm{H_2O} and CO2\mathrm{CO_2} ice that are lost from icy dust assemblages of different sizes during transfer through the coma, and 3) estimate the relative amount of vapor loss in airfall material after deposition in order to understand what locations are expected to be more active than others on the following perihelion approach. We use various numerical simulations, that include orbit dynamics, thermophysics of the nucleus and of individual coma aggregates, coma gas kinetics and hydrodynamics, as well as dust dynamics due to gas drag, to address these questions. We find that the thickness of accumulated airfall material varies substantially with location, and typically is of the order 0.10.1-1m1\,\mathrm{m}. The airfall material preserves substantial amounts of water ice even in relatively small (cm-sized) coma aggregates after a rather long (12h12\,\mathrm{h}) residence in the coma. However, CO2\mathrm{CO_2} is lost within a couple of hours even in relatively large (dm-sized) aggregates, and is not expected to be an important component in airfall deposits. We introduce reachability and survivability indices to measure the relative capacity of different regions to simultaneously collect airfall and to preserve its water ice until the next perihelion passage, thereby grading their potential of contributing to comet activity during the next perihelion passage.Comment: 65 pages, 11 figures. Published manuscrip
    corecore