6,258 research outputs found

    Putative intermediates in the nerve cell differentiation pathway in hydra have properties of multipotent stem cells

    Get PDF
    We have investigated the properties of nerve cell precursors in hydra by analyzing the differentiation and proliferation capacity of interstitial cells in the peduncle of Hydra oligactis, which is a region of active nerve cell differentiation. Our results indicate that about 50% of the interstitial cells in the peduncle can grow rapidly and also give rise to nematocyte precursors when transplanted into a gastric environment. If these cells were committed nerve cell precursors, one would not expect them to differentiate into nematocytes nor to proliferate apparently without limit. Therefore we conclude that cycling interstitial cells in peduncles are not intermediates in the nerve cell differentiation pathway but are stem cells. The remaining interstitial cells in the peduncle are in G1 and have the properties of committed nerve cell precursors (Holstein and David, 1986). Thus, the interstitial cell population in the peduncle contains both stem cells and noncycling nerve precursors. The presence of stem cells in this region makes it likely that these cells are the immediate targets of signals which give rise to nerve cells

    Cell cycle length, cell size, and proliferation rate in hydra stem cells

    Get PDF
    We have analyzed the cell cycle parameters of interstitial cells in Hydra oligactis. Three subpopulations of cells with short, medium, and long cell cycles were identified. Short-cycle cells are stem cells; medium-cycle cells are precursors to nematocyte differentiation; long-cycle cells are precursors to gamete differentiation. We have also determined the effect of different cell densities on the population doubling time, cell cycle length, and cell size of interstitial cells. Our results indicate that decreasing the interstitial cell density from 0.35 to 0.1 interstitial cells/epithelial cell (1) shortens the population doubling time from 4 to 1.8 days, (2) increases the [3H]thymidine labeling index from 0.5 to 0.75 and shifts the nuclear DNA distribution from G2 to S phase cells, and (3) decreases the length of G2 in stem cells from 6 to 3 hr. The shortened cell cycle is correlated with a significant decrease in the size of interstitial stem cells. Coincident with the shortened cell cycle and increased growth rate there is an increase in stem cell self-renewal and a decrease in stem cell differentiation

    Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution

    Get PDF
    Gravitational wave sources are a promising cosmological standard candle because their intrinsic luminosities are determined by fundamental physics (and are insensitive to dust extinction). They are, however, affected by weak lensing magnification due to the gravitational lensing from structures along the line of sight. This lensing is a source of uncertainty in the distance determination, even in the limit of perfect standard candle measurements. It is commonly believed that the uncertainty in the distance to an ensemble of gravitational wave sources is limited by the standard deviation of the lensing magnification distribution divided by the square root of the number of sources. Here we show that by exploiting the non-Gaussian nature of the lensing magnification distribution, we can improve this distance determination, typically by a factor of 2--3; we provide a fitting formula for the effective distance accuracy as a function of redshift for sources where the lensing noise dominates.Comment: matches PRD accepted version (expanded description of the cosmological parameter space + minor changes

    A multiwavelength study of the remnant of nova GK Persei

    Get PDF
    We present new observations of the nebular remnant of the old nova GK Persei 1901, in the optical using the 2m HCT and at low radio frequencies using the GMRT. The evolution of the nova remnant indicates shock interaction with the ambient medium, especially in the southwest quadrant. Application of a simple model for the shock and its evolution to determine the time dependence of the radius of the shell in the southwest quadrant indicates that the shell is now expanding into an ambient medium that has a lower density compared to the density of the ambient medium ahead of the shock in 1987.There are indications of a recent interaction of the nova remnant with the ambient medium in the northeast quadrant also. The nova remnant of GK Per is detected at all the observed radio frequencies and is of similar extent as the optical remnant. Putting together our radio observations with VLA archival data on GK Per from 1997, we obtain three interesting results: 1. The spectrum above 1.4 GHz follows a power law with an index -0.7 and below 1.4 GHz follows a power law with an index ~ -0.85. This could be due to the presence of at least two populations of electrons dominating the global emission at different frequencies. 2. We record an annual secular decrease of 2.1% in the flux density of the nova remnant at 1.4 and 4.9 GHz between 1984 and 1997 which has left the spectral index unchanged at -0.7. No such decrease is observed in the flux densities below 1 GHz. 3. We record an increase in the flux density at 0.33 GHz compared to the previous estimate in 1987. We conclude that the remnant of nova GK Per is similar to supernova remnants and in particular, to the young supernova remnant Cas A.Comment: 10 pages; uses A&A style; figures 1, 2 & 6 are in JPEG format. Accepted for publication in Astronomy & Astrophysics. Full paper including Figures 1, 2 & 6 may be downloaded from http://www.iiap.res.in/personnel/gca/gca.htm

    3D simulations of RS Oph: from accretion to nova blast

    Full text link
    RS Ophiuchi is a recurrent nova with a period of about 22 years, consisting of a wind accreting binary system with a white dwarf (WD) very close to the Chandrasekhar limit and a red giant star (RG). The system is considered a prime candidate to evolve into an SNIa. We present a 3D hydrodynamic simulation of the quiescent accretion and the subsequent explosive phase. The computed circumstellar mass distribution in the quiescent phase is highly structured with a mass enhancement in the orbital plane of about a factor of 2 as compared to the poleward directions. The simulated nova remnant evolves aspherically, propagating faster toward the poles. The shock velocities derived from the simulations are in agreement with those derived from observations. For v_RG = 20 km/s and for nearly isothermal flows, we derive a mass transfer rate to the WD of 10% of the mass loss of the RG. For an RG mass loss of 10^{-7} solar masses per year, we found the orbit of the system to decay by 3% per million years. With the derived mass transfer rate, multi-cycle nova models provide a qualitatively correct recurrence time, amplitude, and fastness of the nova. Our simulations provide, along with the observations and nova models, the third ingredient for a deeper understanding of the recurrent novae of the RS Oph type. In combination with recent multi-cycle nova models, our results suggests that the WD in RS Oph will increase in mass. Several speculative outcomes then seem plausible. The WD may reach the Chandrasekhar limit and explode as an SN Ia. Alternatively, the mass loss of the RG could result in a smaller Roche volume, a common envelope phase, and a narrow WD+WD system. Angular momentum loss due to graviational wave emission could trigger the merger of the two WDs and - perhaps - an SN Ia via the double degenerate scenario.Comment: Accepted by Astronomy & Astrophysics Letters, 4 pages, 5 figures; Version with high resolution figures and movie can be found at http://www.astro.phys.ethz.ch/staff/folini/private/research/rsoph/rsoph.htm

    Topology with Dynamical Overlap Fermions

    Get PDF
    We perform dynamical QCD simulations with nf=2n_f=2 overlap fermions by hybrid Monte-Carlo method on 646^4 to 83×168^3\times 16 lattices. We study the problem of topological sector changing. A new method is proposed which works without topological sector changes. We use this new method to determine the topological susceptibility at various quark masses.Comment: 15 pages, 3 figure

    Gravitational-wave detectability of equal-mass black-hole binaries with aligned spins

    Full text link
    Binary black-hole systems with spins aligned or anti-aligned to the orbital angular momentum provide the natural ground to start detailed studies of the influence of strong-field spin effects on gravitational wave observations of coalescing binaries. Furthermore, such systems may be the preferred end-state of the inspiral of generic supermassive binary black-hole systems. In view of this, we have computed the inspiral and merger of a large set of binary systems of equal-mass black holes with spins parallel to the orbital angular momentum but otherwise arbitrary. Our attention is particularly focused on the gravitational-wave emission so as to quantify how much spin effects contribute to the signal-to-noise ratio, to the horizon distances, and to the relative event rates for the representative ranges in masses and detectors. As expected, the signal-to-noise ratio increases with the projection of the total black hole spin in the direction of the orbital momentum. We find that equal-spin binaries with maximum spin aligned with the orbital angular momentum are more than "three times as loud" as the corresponding binaries with anti-aligned spins, thus corresponding to event rates up to 30 times larger. We also consider the waveform mismatch between the different spinning configurations and find that, within our numerical accuracy, binaries with opposite spins S_1=-S_2 cannot be distinguished whereas binaries with spin S_1=S_2 have clearly distinct gravitational-wave emissions. Finally, we derive a simple expression for the energy radiated in gravitational waves and find that the binaries always have efficiencies E_rad/M > 3.6%, which can become as large as E_rad/M = 10% for maximally spinning binaries with spins aligned with the orbital angular momentum.Comment: 18 pages, 11 figures, matches published versio

    Dynamical overlap simulations using HMC

    Full text link
    We apply the Hybrid Monte Carlo method to the simulation of overlap fermions. We give the fermionic force for the molecular dynamics update. We present early results on a small dynamical chiral ensemble.Comment: Lattice2004(machines), 3 pages; references updated, minor changes to tex

    Late Emission from the Type Ib/c SN 2001em: Overtaking the Hydrogen Envelope

    Full text link
    The Type Ib/c supernova SN 2001em was observed to have strong radio, X-ray, and Halpha emission at an age of about 2.5 yr. Although the radio and X-ray emission have been attributed to an off-axis gamma-ray burst, we model the emission as the interaction of normal SN Ib/c ejecta with a dense, massive (3 Msun) circumstellar shell at a distance about 7 x 10^{16} cm. We investigate two models, in which the circumstellar shell has or has not been overtaken by the forward shock at the time of the X-ray observation. The circumstellar shell was presumably formed by vigorous mass loss with a rate (2-10) x 10^{-3} Msun/yr at 1000-2000 yr prior to the supernova explosion. The hydrogen envelope was completely lost, and subsequently was swept up and accelerated by the fast wind of the presupernova star up to a velocity of 30-50 km/s. Although interaction with the shell can explain most of the late emission properties of SN 2001em, we need to invoke clumping of the gas to explain the low absorption at X-ray and radio wavelengths.Comment: 26 pages, 4 figures, ApJ submitte
    corecore