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1. Introduction

The overlap operator [1,2] , gives a theoretically sound solution of the chirality problem on

the lattice. It satisfies the Ginsparg-Wilson relation [3, 4], which ensures the exact chiral

symmetry at finite lattice spacing [5], moreover the difference in the number of left and

right handed zero modes can be taken as a definition of the topological charge (Q) which

gives the correct result in the continuum limit [6].

However, the numerical implementation of dynamical overlap fermions is still a great

challenge today (for early studies with dynamical overlap fermions we refer to [7–9]). The

presence of nested conjugate gradients for the inversion of the Dirac operator makes the

simulations considerably slower than simulations with Wilson fermions. Furthermore one

has to face the non-continuity of the fermion determinant at the boundary of topological

sectors. This additional difficulty can be treated exactly in frame of the Hybrid Monte Carlo

(HMC) algorithm by modifying the molecular dynamics trajectory at the boundary [10].

Clearly the crossing rate between different topological sectors is heavily affected by this

modification. Inappropriate treatment might confine the system into a certain topological

sector which yields an unacceptably large autocorrelation time for Q in the simulation.

A few exploratory studies are already available in QCD with dynamical overlap fer-

mions [10–15]. All handle the modification of the trajectory at the boundary in a similar

style. The original proposal of [10] is modified in [13] in such a way that the acceptance

rate is increased. It is shown in [14], that the introduction of several pseudofermion fields

which approximate the fermion determinant, can enhance the crossing rate. The relation

between the pseudofermionic (over)estimation and rare topological sector changes1 was

pointed out in [15].

1In the staggered formulation there was already a concern that the pseudofermion estimator obstruct

the change of topological charge [16].
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In this paper we study the problem of changing topological sectors in the case of the

overlap operator with nf = 2 fermions in dynamical HMC simulations. Sec. 2 will give a

short introduction to the sector changing problem for overlap fermions (by summarizing and

extending the work of [15]), and answers the question why the present treatment is unlikely

to change Q. In Sec. 3 a new measurement method of expectation values is proposed,

which circumvents the crossing problem entirely by making simulations constrained to

fixed topological sectors. In Sec. 4 we present numerical results using the new measurement

method. In Sec. 5 conclusions are given.

2. Topological sector changing problem

After introducing pseudofermion fields [17], our partition function reads:

Z =

∫

[dU ]e−Sg detH2 =

∫

[dU ][dφ†][dφ]e−Sg−φ†H−2φ, (2.1)

where H is the hermitian overlap operator:

H = (1− m

2m0
)H0 + γ5m, (2.2)

with H0 being the massless hermitian overlap operator:

H0 = m0[γ5 + sgn(HW )]. (2.3)

Here HW is the standard Wilson operator with negative mass −m0. The sgn function in

H0 causes a Dirac-δ type singularity in the equation of motion of the momenta of the link

variables. The δ-function gives a contribution whenever an eigenvalue λ of HW changes

sign. This subspace of the configuration space coincide with topological sector boundaries.

The reason for this is that in the case of the overlap operator the topological charge is:

Q =
1

2m0
Tr(H0) =

1

2

∑

i

sgn(λi) (2.4)

This means, that there are potential walls, non-differentiable steps in the action at the

topological sector boundaries. The reflection-refraction method suggested in [10] handles

these potential walls correctly. Let’s denote the momenta by p and the normal vector of

the topological sector boundary by n. According to this method one has to modify the

momenta, when arriving at a potential wall:

p →
{

p− n〈n, p〉+ n〈n, p〉
√

1− 2 ∆S
〈n,p〉2

, if 〈n, p〉2 > 2∆S (refraction)

p− 2n〈n, p〉, if 〈n, p〉2 < 2∆S (reflection)
(2.5)

Thus the trajectory will go through the topological sector boundary only if 〈n, p〉2 > 2∆S.

In a HMC algorithm 〈n, p〉 = O(1) and has exponential distribution. ∆S, however, is not

the exact value of the height of the potential wall, but it is the change of the pseudofermionic

action at the boundary. From now on, we will distinguish between these two quantities.

We call the former ∆Sexact and the latter ∆Spf.
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Let us take a closer look2 on the relation between ∆Sexact and 〈∆Spf〉. In particular,

we show that the jump in the pseudofermionic action overestimates ∆Sexact. Let us assume

that the trajectory crosses the boundary. LetH− andH+ be the overlap operator evaluated

on the two sides of the boundary right before and after the crossing, respectively. Clearly

H− and H+ contain the same gauge configuration, but they differ, since one eigenvalue of

HW changes sign on the boundary. In the HMC algorithm one chooses the pseudofermion

field as

φ = H−η, φ† = η†H−,

where η, η† are random vectors with Gaussian distribution, in order to generate φ, φ† with

the correct distribution. (In a real simulation one chooses new pseudofermion configurations

only at the beginning of each trajectory, but for simplicity let’s consider, that φ and φ† are

refreshed when hitting the boundary.) The jump of the pseudofermionic action now reads:

∆Spf = Spf+ − Spf− = η†(H−H
−2
+ H− − 1)η

The relation between ∆Sexact and ∆Spf can be obtained by the following straightforward

calculation:

e−∆Sexact =
detH2

+

detH2
−

=

∫

[dη†][dη]e−η†ηe−η†(H−H−2
+ H−−1)η

∫

[dη†][dη]e−η†η
=

= 〈e−η†(H−H−2
+ H−−1)η〉η†η ≥ e

−〈η†(H−H−2
+ H−−1)η〉

η†η = e−〈∆Spf〉

The inequality in the second line is a consequence of the concavity of the e−x function. So

we conclude to:

〈∆Spf〉 ≥ ∆Sexact.

We can examine this relation in realistic simulations, if we take into account, that

there is a simple relation between H+ and H−. Let’s denote by λ0 the eigenvalue of HW

which crosses zero at the boundary, and by |0〉 the eigenvector belonging to λ0. With this

notation:

H+ = H− + c|0〉〈0|,
where

c = ∆sgnλ0 m0(1−
m

2m0
),

with ∆sgnλ0 = ±2 being the jump of sgnλ0 on the boundary. The expectation value of

the discontinuity in the pseudofermionic action is:

〈∆Spf〉 = 〈η†(H−H
−2
+ H− − 1)η〉η†η = Tr(H−H

−2
+ H− − 1) =

= Tr
(

(1− c|0〉〈0|H−1
+ )(1− c H−1

+ |0〉〈0|) − 1
)

= −2c〈0|H−1
+ |0〉+ c2〈0|H−2

+ |0〉. (2.6)

In a similar way one can get a simple formula for the exact value of the jump on the

boundary:

e−∆Sexact =
detH2

+

detH2
−

=
1

det(H−1
+ H−)2

=
1

det(1− cH−1
+ |0〉〈0|)2

=
1

(1− c〈0|H−1
+ |0〉)2

. (2.7)

2The following considerations in this section have already partially appeared in [15].
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eq. (2.6) and eq. (2.7) offers a numerically fast way to determine both action jumps, since

one needs only one inversion of the overlap operator to obtain both of them.

Figure 1: The jump in the exact vs. pseudofermionic action at β = 4.05 andm = 0.1, 0.2. Since the

average of 〈n, p〉2 is around ≈ 1, topological sector changing would happen considerably frequently

using Sexact, than with Spf . We also indicated the probability of topological sector changing with

the pseudofermionic action, and an estimate on the probability using the exact action (assuming

that the two algorithms would behave the same way except for the boundaries).

For illustration we made a scatter plot (Fig. 1) from a 64 lattice at two different

masses. (Details of our action will be described in Section 4.) One can clearly see, that

the use of the pseudofermions has an awkward consequence: there are a huge amount

of crossings, where the topological sector changing fails only due to the overestimation.

One way to cure this is to use several pseudofermion estimators instead of one [14]. More

pseudofermions mean smaller spread of the pseudofermionic action distribution, therefore

the overestimation is smaller, too. However the computational time also increases with

the number of extra fields. Obviously the best would be to use the exact action in the

simulations, but only its discontinuity on the boundary can be calculated easily. The next

section will present a technique, which uses this discontinuity to get the relative weight of

topological sectors.

3. The new method

In this section we propose a new method for the calculation of physical observables by which

it becomes possible to circumvent the problem of topological sector changing described in

the previous section. Let us write the partition function in the form (assuming a vanishing

θ parameter):
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Z =

∞
∑

Q=−∞

ZQ,

where ZQ is the partition function of the topological sector Q. The expectation value of

an observable:

〈O〉 =
∑

Q ZQ〈O〉Q
∑

Q ZQ
=

∑

Q
ZQ

Z0
〈O〉Q

∑

Q
ZQ

Z0

,

where the restricted expectation value 〈O〉Q is

〈O〉Q =
1

ZQ

∫

[dU ]QO[U ] detH2
Q exp(−Sg).

For reasons which will be clear later the integration goes not only over the configurations

with Q charge, but also over the boundary of the topological sector as well (though the

boundary has only zero measure in this case). When calculating the partition function

in a given topological sector the following boundary prescription is used: we define the

determinant on the boundary as the limit of determinants approaching the wall from the

Q side (detH2
Q). If the measurement of the quantities ZQ+1/ZQ would be possible, then

we could recover ZQ/Z0 for any Q. With these in hand, we would need only the restricted

expectation values 〈O〉Q, whose measurement doesn’t require topological sector changings.

Now we will show a way to measure ZQ+1/ZQ. It will make use of the fact, that

we can calculate easily ∆Sexact on the boundary of topological sectors (see eq. (2.7)).

The pseudofermionic action is only used to generate configurations in fixed topological

sectors, so its bad distribution for the jump of the action will not effect us. (In the

following formulae ∆S will automatically mean ∆Sexact.) The main idea is the following:

an observable measured in sector Q is inversely proportional to ZQ and an observable in

Q+1 is to ZQ+1. If the observables in the two sectors are concentrated only to the common

wall separating the two sectors, then from the ratio of the two expectation values one can

recover the ratio of the two sectors.

First let us measure in the Q sector an operator, which is concentrated to the boundary:

〈δQ,Q+1F 〉Q =
1

ZQ

∫

[dU ]QδQ,Q+1F [U ] detH2
Q exp(−Sg), (3.1)

where we introduced the distribution δQ,Q+1, a Dirac-δ, which is equal to zero everywhere

but on the Q,Q+ 1 boundary. Then let us measure another operator G on the same wall

(thus on the boundary separating sectors Q and Q+ 1), but now from the Q+ 1 sector:

〈δQ,Q+1G〉Q+1 =
1

ZQ+1

∫

[dU ]Q+1δQ,Q+1G[U ] detH2
Q+1 exp(−Sg). (3.2)

The wall is the same (i.e. [dU ]QδQ,Q+1 = [dU ]Q+1δQ,Q+1) in both cases, however due to our

boundary prescription the determinants are different on it. Therefore if F and G satisfies:

F [U ] detH2
Q[U ] = G[U ] detH2

Q+1[U ], (3.3)
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then the ratio of eq. (3.1) and eq. (3.2) gives us

〈δQ,Q+1F 〉Q
〈δQ,Q+1G〉Q+1

=
ZQ+1

ZQ
. (3.4)

The easiest choice is G(U) = 1 and F (U) = detH2
Q+1/detH

2
Q = exp(−∆S), the ratio

of sectors becomes:

ZQ+1/ZQ =
〈δQ,Q+1 exp(−∆S)〉Q

〈δQ,Q+1〉Q+1
. (3.5)

This choice is still not optimal, since the measurement of the numerator is problematic, if

the distribution of ∆S extends to negative values. The exponential function amplifies the

small fluctuations in the negative ∆S region, which can destroy the whole measurement:

a very small fraction of the configurations will dominate the result. As a consequence

one ends up with relatively large statistical uncertainties. With a slightly different choice

of F and G we can improve on the situation. With F (U) = Θ(∆S − x) exp(−∆S) and

G(U) = Θ(∆S − x) we can omit the problematic part of the ∆S distribution (the values

smaller than x) from the measurement, and we get:

ZQ+1/ZQ =
〈δQ,Q+1 exp(−∆S)〉∆S>x

Q

〈δQ,Q+1〉∆S>x
Q+1

. (3.6)

The price of this choice of F,G is that we do not make use of the ∆S < x part of our data

set. The value of x can be tuned to minimize the statistical error.

Let us note that eq. (3.3) can be viewed as a detailed balance condition on a given U

configuration between Q and Q+1 sector (F and G are just the “transition probabilities”).

This can give us a hint, that the Metropolis-step is a good a solution for F,G: F =

min(1, exp(−∆S)) and G = min(1, exp(∆S)). The ratio of sectors is simply:

ZQ+1/ZQ =
〈δQ,Q+1min(1, exp(−∆S))〉Q
〈δQ,Q+1min(1, exp(∆S))〉Q+1

. (3.7)

The inconvenient part of the distribution (∆S < 0) is cut off, however in contrast to eq.

(3.6) all configurations are used to get the expectation values.

We have achieved our main goal: without making expensive topological sector changes

we can obtain the ratio of sectors (see eq. (3.5, 3.6, 3.7)). The key point is to make

simulations constrained to fixed topological charge, and match the results on the com-

mon boundaries of the sectors. In the next subsection we will show in the framework of

HMC, how to measure an expectation value, which contains a Dirac-delta on the surface.

Our proposal is that the generation of trajectories inside a sector can be done using the

pseudofermionic action, we do not need there the exact action. Since no sector changing is

required, the inconvenient distribution of the pseudofermionic action jump on the bound-

ary will not effect the measurement of the ratios of sectors. The exact action is needed

only on the boundary: the formulas (3.5, 3.6, 3.7) require ∆S.

It is clear that using the exact fermion action when measuring the ratio of sectors

outperforms the conventional HMC, where topological sector changing is hindered by the

distribution of the pseudofermionic action jump. Even in that (at the moment theoretical)
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case if we were able to use the exact fermionic action in simulations, the above presented

method is better in determining the ratios of topological sectors. Consider a small quark

mass simulation, where a HMC using the exact fermionic action sticks into the trivial topo-

logical sector (now due to the fact, that nontrivial topologies are suppressed by the fermion

determinant). If the simulation time is not long enough, then we have no information at all

on the small (but nonvanishing) ratio Z1/Z0. However in our method this small quantity

can be measured. The more we hit the wall from the two sides the more precisely we can

measure Z1/Z0. The same argument applies to an R-type algorithm (where it is possible

to use the exact ∆S jump, when crossing topological sectors [15]).

Obviously an important issue for this new method is whether topological sectors defined

by the overlap charge are path-connected or not. We refer to some results in the Abelian and

in the non-Abelian gauge group case [18,19]. If configurations with the same Q would not

be continuously connectable in sector Q, then our assumption that we make measurements

on the common boundary of sectors could be violated. It could happen, that the wall

sampled from sector Q does not coincide with the wall sampled from Q+ 1. Moreover the

fixed sector simulations would also violate ergodicity in this case. Let us note here that the

large autocorrelation time for the topological charge in the conventional pseudofermionic

HMC effectively also causes the breakdown of ergodicity. In case of non-connected sectors

one can cure these problems by releasing the system from a sector after a certain amount

of time and closing it to another.

Expectation value of a δ-function

In a HMC simulation one determines the expectation value of an operator by calcu-

lating a sum over the measured values of the observable on N configurations, which are

generated with the proper weights, by which they occur in the functional integral. In prac-

tice it is not possible to measure an operator containing a Dirac-delta on the boundary

surface on these configurations, because none of them will be exactly located on it. There-

fore we formulate a somewhat different measurement method, and discuss its properties.

As a result one has to make measurements at those points of the trajectories, where they

hit the boundary.

Let us see the details. Consider for a moment that we are able to integrate the Hamil-

tonian equations of motion exactly. If the distribution of the gauge field, pseudofermion

field and momenta was correct at the starting point of the trajectory, then it will be still

correct for any of the inner points. This fact follows from energy and area conservation

and reversibility. So we make no mistake if we put the inner points of the trajectory into

the ensemble. We can write:

〈O〉 = lim
N→∞

1

N

N
∑

i=1

Oi = lim
N→∞

1

N

N
∑

i=1

∫

i

O(Ut)dt = lim
N→∞

1

N

N
∑

i=1

Oi,i+1 (3.8)

where t is the microcanonical time, Ut is the gauge configuration at time t, the i subscript

at the integral means that the integration goes for the ith trajectory, and Oi,i+1 is thus

the average of the operator O along this trajectory. In the case of an observable, which
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contains a δ-function, like those in eq. (3.6) or in eq. (3.7) this reads:

Oi,i+1 =

∫

i

dt o(Ut) δ (λ0(Ut)) , (3.9)

where it is indicated, that the δ-function depends on the gauge configuration only through

the smallest absolute value eigenvalue λ0 of HW . If the variable of integration is changed

from t to λ0, we get:

Oi,i+1 =

∫

dλ0

∑

j

∣

∣

∣

∣

dt

dλ0

∣

∣

∣

∣

tj ,λ0(Utj
)=0

o(Utj )δ(λ0). (3.10)

We can go further by determining the time derivative of the smallest eigenvalue:

dλ0

dt
= 〈0|tr∂HW

∂UT

dU

dt
|0〉 (3.11)

where, again |0〉 is the eigenvector belonging to λ0. The trace and transpose operations

are meant to be in color space. Recognizing, that with our previous notation

dU

dt
= pU and 〈0|U ∂HW

∂UT
|0〉 = n

yields
dλ0

dt
= 〈n, p〉,

∣

∣

∣

∣

dt

dλ0

∣

∣

∣

∣

=
1

|〈n, p〉| , (3.12)

〈O〉 = lim
N→∞

1

N

N
∑

i=1

∑

j

o(Utj )
1

|〈n, ptj 〉|

∣

∣

∣

∣

tj ,λ0(Utj
)=0

(3.13)

If we put it simple, the above formula says, that since the integration is in microcanonical

time, the angle and velocity by which the trajectory hits the boundary has to be taken

into account.

Let us turn back to the case, when the integration of the equations of motion can

be done only with finite step size integrator. The leap-frog procedure has O(ǫ3) error

per microcanonical step, which after 1/ǫ steps makes the trajectory differ by O(ǫ2) from

the exact trajectory. If we can guarantee, that the modification of the trajectory at the

boundary also violates the equations of motions only upto O(ǫ2), then in the final results

the errors will be proportional with O(
√
Nǫ2). The original reflection algorithm in [10]

has O(ǫ) errors, later it was improved to O(ǫ2) in [13]. In the Appendix we propose a

different reflection procedure and prove that it is reversible, area-preserving and conserves

the energy upto O(ǫ2).

4. Numerical results

In the previous section we described a new method, to solve the topological sector changing

problem of pseudofermionic HMC simulation. We describe here the details of the simula-

tions, and finally give the topological susceptibility in physical units measured on 84 and

83 × 16 lattices.
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Simulations were done using unit length trajectories, separated by momentum and

pseudofermion refreshments. The system was confined to a fixed topological sector in each

run, we reflected the trajectories whenever they reached a sector boundary. The end points

of the trajectories obviously follow the exact distribution in a given sector, usual quantities

can be measured on them. When calculating the ratio of sectors using eq. (3.5) or eq.

(3.6) or eq. (3.7) we integrated along the trajectories, this quantity will be burdened by a

step size error.

Figure 2: Left panel: a typical optimization procedure of the lower limit (x) on ∆S in the

formula (3.6). The statistical error of the ratio Z1/Z0 shows a minimum as the function of x, which

is considered as the optimal value. Right panel: Bare mass dependence of topological susceptibility

using three different methods on 64 lattices. The points corresponding to the same mass were

slightly shifted vertically for clarity. Result based on our new technique and eq. (3.6) is on the

left, based on eq. (3.7) is in the middle, the standard pseudofermionic HMC is on the right. The

simulation parameters are from [20]

In case of large enough statistics the value of ZQ+1/ZQ should be the same, indepen-

dently which of the three formula (3.5, 3.6, 3.7) was used to calculate it. We omit eq. (3.5)

in the following, since it is hard to give a reliable error estimate on the expectation value of

exp(−∆S), if ∆S can be arbitrary negative number. Eq. (3.6) still measures exp(−∆S),

but with a lower limit (x) on ∆S. Smaller limit yields a smaller and more reliable error,

however the statistics is decreased at the same time. One can tune the value of x, so that

the statistical error takes its minimum. A result of a typical optimum search can be seen

on the left panel of Fig. 2. The optimal value can be compared to the one obtained from

eq. (3.7). On the right panel of Fig. 2 the two new topological susceptibilities and the

one calculated by using traditional pseudofermionic HMC [20] are shown. The agreement

is perfect.
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To measure the topological susceptibility on
m r0 mπ Lmπ

0.03 3.52(13) 0.29(11) 2.4

0.1 3.17(5) 0.53(4) 4.3

0.2 2.89(2) 0.74(6) 5.9

0.3 2.88(6) 0.99(8) 7.9

Table 1: Sommer-scale, pion mass and

pion mass times box size on 83×16 lattices.

84 lattices we generated configurations with tree-

level Symanzik improved gauge action (β = 4.15

gauge coupling) and 2 step stout smeared overlap

kernel (ρ = 0.15 smearing parameter, the kernel

was the standard Wilson matrix with m0 = 1.3).

We performed runs in sectors Q = 0 . . . 3 (based

on the measured Z3/Z2 we can conclude, that the

contribution of Q ≥ 4 sectors are small compared

to statistical uncertainties). For the negatively charged sectors we used the Q → −Q

symmetry of the partition function. The bare masses were m = 0.03, 0.1, 0.2 and 0.3,

at each mass approximately 1000 trajectories were collected. The average number of the

topological sector boundary hittings was around 1.5 per trajectory. We calculated the ratio

of sectors using eq. (3.6) and eq. (3.7). The result for the topological susceptibility can be

seen on Fig. 3. It is nicely suppressed for the smallest mass. To convert it into physical

units, we measured the static potential and the pion mass on 83 × 16 lattices (Table 1).

Since our statistics was quite small on these asymmetric lattices, the errors are large. Note,

that in order to get the mass-dimension 4 topological susceptibility in physical units, one

has to make very precise scale measurements.

Figure 3: Topological susceptibility as the function of quark mass on 84 lattices in lattice units

(left), and in physical units as the function of pion mass (right). Scale fixing and mass measurements

were done on 83× 16. The error bars on the right plot do not contain the errors of scale fixing. The

line is the leading order chiral behavior in the continuum.

When interpreting the results, one should keep in mind, that the volume is small, and

the lattice spacing is large. Note however, that smeared kernel overlap actions show nice

scaling behavior and good locality properties already at moderate lattice spacings [21,22].
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5. Conclusions

In this paper we studied the problem of topological sector changing in dynamical overlap

simulations. The origin of the unexpectedly large autocorrelation time for the topological

charge is connected to pseudofermions, which approximate the fermion determinant. The

pseudofermionic action overestimates the size of the discontinuity in the fermion deter-

minant at the topological sector boundary, so the system cannot enter easily to a new

topological sector. This happens even if the use of the exact determinant favored a transi-

tion. (The discontinuity of the exact determinant can be calculated in a rather inexpensive

way.)

We developed a new method, which circumvents the problem of topological sector

changing. It confines the system to fixed topological sectors (by always reflecting the HMC

trajectories from the topological sector boundaries). Thus overestimating the discontinu-

ity of the determinant due to pseudofermions will not effect the determination of topology

related quantities. The relative weight of two topological sector is obtained by measuring

appropriate operators on the common boundary surface. The measurement of such oper-

ators can be carried out by extending the usual HMC measurement method, however an

O(ǫ2) extrapolation in HMC step size is required.

The new method was tested on 64 lattices, where previous conventional HMC results

were available. The old and new results were consistent. We also measured the topological

susceptibility on 84 lattices with an improved overlap fermion and gauge action, furthermore

simulations were done on 83 × 16 lattices to convert the lattice results into physical units.
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Appendix

We present a reflection algorithm which conserves the energy upto O(ǫ2), and which is

reversible and area conserving. Until the boundary the trajectory is evolved by the usual

leapfrog procedure. An elementary leapfrog step can be written in the following symbolic

way:

P (ǫ/2)U(ǫ)P (ǫ/2), (5.1)

where U(ǫ) and P (ǫ) are the operators updating the links (u) and the momenta (p):

U(ǫ) : u → exp(ǫp)u, P (ǫ) : p → p− ǫA

[

u
∂

∂u
(Sg + Spf)

]

,

where in the force term the A operator projects onto traceless, antihermitian matrices (in

color indices). Now we split the evolution of the links into two parts:

P (ǫ/2)U(ǫ/2) · U(ǫ/2)P (ǫ/2). (5.2)
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Consider that the boundary would be crossed during one of the evolutions of the links in

eq. (5.2). Then replace the original leapfrog with the following:

P (ǫ/2)U(ǫ/2) · U(ǫc)P (ǫc)RP (ǫc)U(ǫc) · U(ǫ/2)P (ǫ/2),

where R is simply the reflection of the momenta (eq. (2.5)). ǫc is the time to reach the

boundary surface measured from the midpoint of the leapfrog. Thus if the crossing would

happen in the first evolution then ǫc < 0, if in the second, then ǫc > 0. The reversibility can

be checked easily, for the energy conservation we note that both U(ǫ)P (ǫ) and P (ǫ)U(ǫ)

conserves the energy upto O(ǫ2). If the evolution time does not depend on the variables,

then both U(ǫ) and P (ǫ) are area conserving. The only problem arises due to the link and

momenta dependence of ǫc. We will now show that the combined effect of the ǫc updates

U(ǫc)P (ǫc)RP (ǫc)U(ǫc) (5.3)

is still area preserving.

For simplicity we will not carry out here the computation using the SU(3) structure,

but only for a k-dimensional Euclidean vectorspace (the q coordinates are k-component

vectors). All features of the proof are also present in this simpler case. We have to

calculate the Jacobian of the following transformation

q′(q, p) = q + ǫcp+ ǫcp
′ p′(q, p) = Rp+ h.

Rab = δab − 2nanb is the reflection operator (a, b = 1 . . . k), where na is the normal vector

of the surface. h can be expressed as h = −ǫcF − ǫcRF , where F is the force on the wall

(interpreted in the sector into which we reflect back the trajectory). Since h is measured

on the wall, its q and p derivatives satisfy ∂h/∂p = ǫc∂h/∂q (see [10]). Furthermore h is

orthogonal to n ((nh) = 0). For the q derivative of p′ we introduce the matrix Zab, which

contains the derivatives of the normal vector and h:

∂p′a
∂qb

= Zab.

Using that n and h are functions of the wall coordinates, ǫcZ will appear in the p derivative

of p′:

∂p′a
∂pb

= Rab + ǫcZab.

The partial derivatives of q′ are:

∂q′a
∂qb

= δab + (pa + p′a)
∂ǫc
∂qb

+ ǫc
∂p′a
∂qb

,

∂q′a
∂pb

= ǫcδab + (pa + p′a)
∂ǫc
∂pb

+ ǫc
∂p′a
∂pb

.

With the help of the following identities (see [10]):

∂ǫc
∂qa

= − na

(np)

∂ǫc
∂pa

= −ǫc
na

(np)
,
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the Jacobian can be written in a hypermatrix form (x ◦ y has components xayb):

J =

(

∂q′

∂q
∂q′

∂p
∂p′

∂q
∂p′

∂p

)

=

(

1 −2ǫcQ

0 R

)

− 1

(np)

(

1 ǫc
0 0

)

⊗ [(p + p′) ◦ n] +
(

ǫc ǫ2c
1 ǫc

)

⊗ Z.

Q is the projector to the subspace orthogonal to n (Q = 1− n ◦ n). J can be written as a

product of two matrices J = J1J2, where

J1 =

(

1 −2ǫcQ

0 R

)

,

having determinant −1 (since R is a reflection).

J2 =

(

1 0

0 1

)

⊗ 1− 1

(np)

(

1 ǫc
0 0

)

⊗ [(p+ p′) ◦ n] +
(

−ǫc −ǫ2c
1 ǫc

)

⊗RZ,

which has an upper triangular form in the 2×2 space in a suitable basis. The determinant

of J2 will be unity due to the orthogonality of p + p′ = p + Rp + h = −2Qp + h and n.

Therefore detJ = −1, which shows that the transformation (5.3) preserves the area.
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