362 research outputs found
A subset of morphologically distinct mammary myoepithelial cells lacks corresponding immunophenotypic markers
INTRODUCTION: Immunostaining for smooth muscle actin (SMA) is commonly used to elucidate mammary myoepithelial (ME) cells, whose presence or absence is a reliable criterion for differentiating in situ and invasive carcinomas. However, some morphologically distinct ME cells fail to stain for SMA. This study intended to assess whether these SMA-negative cells also lack the expression of other ME cell markers. METHODS: Hematoxylin/eosin and SMA immunostained sections from 175 breast cancer patients were examined. Three cases were found to harbor ducts that showed morphologically distinct ME cell layers, but showed no SMA immunostaining in at least one-third of the layer or the entire layer. Eight additional consecutive sections from each case were stained for SMA, using a black chromogen, and each was then re-stained for one of eight additional markers supposed to exclusively or preferentially stain ME cells, using a red chromogen. SMA-negative ME cells were re-examined for the expression of other markers. RESULTS: SMA-negative ME cells in two cases also failed to display immunoreactivity for other markers, including calponin, CD10, smooth muscle myosin heavy chain, protease inhibitor 5 (maspin), Wilms' tumor-1, and cytokeratins 5, 14, and 17 (CK5, CK14, and CK17). However, in one case SMA-negative ME cells displayed immunoreactivities for maspin, CK5, CK14, and CK17. The distribution of these ME cells is independent of ductal size, length, and architecture. CONCLUSIONS: A subset of morphologically identifiable ME cells lack the expression of nine corresponding immunophenotypic markers, suggesting that ME cells might also be subject to different normal and pathological alterations
Recurrence of ventricular arrhythmias in ischaemic secondary prevention implantable cardioverter defibrillator recipients: long-term follow-up of the Leiden out-of-hospital cardiac arrest study (LOHCAT)
Aims to assess the long-term rate of mortality and the recurrence of potentially life-threatening ventricular arrhythmias in secondary prevention implantable cardioverter defibrillator (ICD) patients and to construct a model for baseline risk stratification.Methods and resultsSince 1996, all patients with ischaemic heart disease, receiving ICD therapy for secondary prevention of sudden death, were included in the current study. Patients were evaluated at implantation and during long-term follow-up. A total of 456 patients were included in the analysis and followed for 54 ± 35 months. During follow-up, 100 (22) patients died and ICD therapy was noted in 216 (47) patients, of which 138 (30) for fast, potentially life-threatening ventricular arrhythmia. Multivariate analysis revealed a history of atrial fibrillation or flutter (AF), ventricular tachycardia as presenting arrhythmia, and wide QRS and poor left ventricular ejection fraction as independent predictors of life-threatening ventricular arrhythmias. The strongest predictor was AF with a hazard ratio of 2.1 (95 confidence interval 1.3-3.2). On the basis of the available clinical data, it was not possible to identify a group which exhibited no risk on recurrence of potentially life-threatening ventricular arrhythmias.ConclusionIschaemic secondary prevention ICD recipients exhibit a high recurrence rate of potentially life-threatening ventricular arrhythmias. Factors that increase risk can be identified but, even with these factors, it was not possible to distinguish a recurrence-free group
Inclusive Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions
Inclusive differential cross sections and
for the production of \kzeros, \lambdazero, and
\antilambda particles are measured at HERA in proton-induced reactions on C,
Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to
GeV in the proton-nucleon system. The ratios of differential
cross sections \rklpa and \rllpa are measured to be and , respectively, for \xf . No significant dependence upon the
target material is observed. Within errors, the slopes of the transverse
momentum distributions also show no significant
dependence upon the target material. The dependence of the extrapolated total
cross sections on the atomic mass of the target material is
discussed, and the deduced cross sections per nucleon are
compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table
Residual γH2AX foci as an indication of lethal DNA lesions
<p>Abstract</p> <p>Background</p> <p>Evidence suggests that tumor cells exposed to some DNA damaging agents are more likely to die if they retain microscopically visible γH2AX foci that are known to mark sites of double-strand breaks. This appears to be true even after exposure to the alkylating agent MNNG that does not cause direct double-strand breaks but does produce γH2AX foci when damaged DNA undergoes replication.</p> <p>Methods</p> <p>To examine this predictive ability further, SiHa human cervical carcinoma cells were exposed to 8 DNA damaging drugs (camptothecin, cisplatin, doxorubicin, etoposide, hydrogen peroxide, MNNG, temozolomide, and tirapazamine) and the fraction of cells that retained γH2AX foci 24 hours after a 30 or 60 min treatment was compared with the fraction of cells that lost clonogenicity. To determine if cells with residual repair foci are the cells that die, SiHa cervical cancer cells were stably transfected with a RAD51-GFP construct and live cell analysis was used to follow the fate of irradiated cells with RAD51-GFP foci.</p> <p>Results</p> <p>For all drugs regardless of their mechanism of interaction with DNA, close to a 1:1 correlation was observed between clonogenic surviving fraction and the fraction of cells that retained γH2AX foci 24 hours after treatment. Initial studies established that the fraction of cells that retained RAD51 foci after irradiation was similar to the fraction of cells that retained γH2AX foci and subsequently lost clonogenicity. Tracking individual irradiated live cells confirmed that SiHa cells with RAD51-GFP foci 24 hours after irradiation were more likely to die.</p> <p>Conclusion</p> <p>Retention of DNA damage-induced γH2AX foci appears to be indicative of lethal DNA damage so that it may be possible to predict tumor cell killing by a wide variety of DNA damaging agents simply by scoring the fraction of cells that retain γH2AX foci.</p
Accurate peak list extraction from proteomic mass spectra for identification and profiling studies
<p>Abstract</p> <p>Background</p> <p>Mass spectrometry is an essential technique in proteomics both to identify the proteins of a biological sample and to compare proteomic profiles of different samples. In both cases, the main phase of the data analysis is the procedure to extract the significant features from a mass spectrum. Its final output is the so-called peak list which contains the mass, the charge and the intensity of every detected biomolecule. The main steps of the peak list extraction procedure are usually preprocessing, peak detection, peak selection, charge determination and monoisotoping operation.</p> <p>Results</p> <p>This paper describes an original algorithm for peak list extraction from low and high resolution mass spectra. It has been developed principally to improve the precision of peak extraction in comparison to other reference algorithms. It contains many innovative features among which a sophisticated method for managing the overlapping isotopic distributions.</p> <p>Conclusions</p> <p>The performances of the basic version of the algorithm and of its optional functionalities have been evaluated in this paper on both SELDI-TOF, MALDI-TOF and ESI-FTICR ECD mass spectra. Executable files of MassSpec, a MATLAB implementation of the peak list extraction procedure for Windows and Linux systems, can be downloaded free of charge for nonprofit institutions from the following web site: <url>http://aimed11.unipv.it/MassSpec</url></p
Proteotypic classification of spontaneous and transgenic mammary neoplasms
INTRODUCTION: Mammary tumors in mice are categorized by using morphologic and architectural criteria. Immunolabeling for terminal differentiation markers was compared among a variety of mouse mammary neoplasms because expression of terminal differentiation markers, and especially of keratins, provides important information on the origin of neoplastic cells and their degree of differentiation. METHODS: Expression patterns for terminal differentiation markers were used to characterize tumor types and to study tumor progression in transgenic mouse models of mammary neoplasia (mice overexpressing Neu (Erbb2), Hras, Myc, Notch4, SV40-TAg, Tgfa, and Wnt1), in spontaneous mammary carcinomas, and in mammary neoplasms associated with infection by the mouse mammary tumor virus (MMTV). RESULTS: On the basis of the expression of terminal differentiation markers, three types of neoplasm were identified: first, simple carcinomas composed exclusively of cells with a luminal phenotype are characteristic of neoplasms arising in mice transgenic for Neu, Hras, Myc, Notch4, and SV40-TAg; second, 'complex carcinomas' displaying luminal and myoepithelial differentiation are characteristic of type P tumors arising in mice transgenic for Wnt1, neoplasms arising in mice infected by the MMTV, and spontaneous adenosquamous carcinomas; and third, 'carcinomas with epithelial to mesenchymal transition (EMT)' are a characteristic feature of tumor progression in Hras-, Myc-, and SV40-TAg-induced mammary neoplasms and PL/J and SJL/J mouse strains, and display de novo expression of myoepithelial and mesenchymal cell markers. In sharp contrast, EMT was not detected in papillary adenocarcinomas arising in BALB/cJ mice, spontaneous adenoacanthomas, neoplasms associated with MMTV-infection, or in neoplasms arising in mice transgenic for Neu and Wnt1. CONCLUSIONS: Immunohistochemical profiles of complex neoplasms are consistent with a stem cell origin, whereas simple carcinomas might originate from a cell committed to the luminal lineage. In addition, these results suggest that the initiating oncogenic events determine the morphologic features associated with cancer progression because EMT is observed only in certain types of neoplasm
Assessment of Metabolome Annotation Quality: A Method for Evaluating the False Discovery Rate of Elemental Composition Searches
BACKGROUND: In metabolomics researches using mass spectrometry (MS), systematic searching of high-resolution mass data against compound databases is often the first step of metabolite annotation to determine elemental compositions possessing similar theoretical mass numbers. However, incorrect hits derived from errors in mass analyses will be included in the results of elemental composition searches. To assess the quality of peak annotation information, a novel methodology for false discovery rates (FDR) evaluation is presented in this study. Based on the FDR analyses, several aspects of an elemental composition search, including setting a threshold, estimating FDR, and the types of elemental composition databases most reliable for searching are discussed. METHODOLOGY/PRINCIPAL FINDINGS: The FDR can be determined from one measured value (i.e., the hit rate for search queries) and four parameters determined by Monte Carlo simulation. The results indicate that relatively high FDR values (30-50%) were obtained when searching time-of-flight (TOF)/MS data using the KNApSAcK and KEGG databases. In addition, searches against large all-in-one databases (e.g., PubChem) always produced unacceptable results (FDR >70%). The estimated FDRs suggest that the quality of search results can be improved not only by performing more accurate mass analysis but also by modifying the properties of the compound database. A theoretical analysis indicates that FDR could be improved by using compound database with smaller but higher completeness entries. CONCLUSIONS/SIGNIFICANCE: High accuracy mass analysis, such as Fourier transform (FT)-MS, is needed for reliable annotation (FDR <10%). In addition, a small, customized compound database is preferable for high-quality annotation of metabolome data
Longitudinal study of DNA methylation during the first 5 years of life.
Background: Early life epigenetic programming influences adult health outcomes. Moreover, DNA methylation levels have been found to change more rapidly during the first years of life. Our aim was the identification and characterization of the CpG sites that are modified with time during the first years of life. We hypothesize that these DNA methylation changes would lead to the detection of genes that might be epigenetically modulated by environmental factors during early childhood and which, if disturbed, might contribute to susceptibility to diseases later in life. Methods: The study of the DNA methylation pattern of 485577 CpG sites was performed on 30 blood samples from 15 subjects, collected both at birth and at 5 years old, using Illumina® Infinium 450 k array. To identify differentially methylated CpG (dmCpG) sites, the methylation status of each probe was examined using linear models and the Empirical Bayes Moderated t test implemented in the limma package of R/Bioconductor. Surogate variable analysis was used to account for batch effects. Results: DNA methylation levels significantly changed from birth to 5 years of age in 6641 CpG sites. Of these, 36.79 % were hypermethylated and were associated with genes related mainly to developmental ontology terms, while 63.21 % were hypomethylated probes and associated with genes related to immune function. Conclusions: Our results suggest that DNA methylation alterations with age during the first years of life might play a significant role in development and the regulation of leukocyte-specific functions. This supports the idea that blood leukocytes experience genome remodeling related to their interaction with environmental factors, underlining the importance of environmental exposures during the first years of life and suggesting that new strategies should be take into consideration for disease prevention
- …