704 research outputs found

    A Population of Dust-rich Quasars at z ~ 1.5

    Get PDF
    We report Herschel SPIRE (250, 350, and 500 μm) detections of 32 quasars with redshifts 0.5 ≤z < 3.6 from the Herschel Multi-tiered Extragalactic Survey (HerMES). These sources are from a MIPS 24 μm flux-limited sample of 326 quasars in the Lockman Hole Field. The extensive multi-wavelength data available in the field permit construction of the rest-frame spectral energy distributions (SEDs) from ultraviolet to the mid-infrared for all sources, and to the far-infrared (FIR) for the 32 objects. Most quasars with Herschel FIR detections show dust temperatures in the range of 25-60 K, with a mean of 34 K. The FIR luminosities range from 10^(11.3) to 10^(13.5) L_☉, qualifying most of their hosts as ultra- or hyper-luminous infrared galaxies. These FIR-detected quasars may represent a dust-rich population, but with lower redshifts and fainter luminosities than quasars observed at ~1 mm. However, their FIR properties cannot be predicted from shorter wavelengths (0.3-20 μm, rest frame), and the bolometric luminosities derived using the 5100 Å index may be underestimated for these FIR-detected quasars. Regardless of redshift, we observed a decline in the relative strength of FIR luminosities for quasars with higher near-infrared luminosities

    HerMES: Current Cosmic Infrared Background Estimates Can be Explained by Known Galaxies and their Faint Companions at z < 4

    Get PDF
    We report contributions to cosmic infrared background (CIB) intensities originating from known galaxies and their faint companions at submillimeter wavelengths. Using the publicly-available UltraVISTA catalog, and maps at 250, 350, and 500 {\mu}m from the \emph{Herschel} Multi-tiered Extragalactic Survey (HerMES), we perform a novel measurement that exploits the fact that uncatalogued sources may bias stacked flux densities --- particularly if the resolution of the image is poor --- and intentionally smooth the images before stacking and summing intensities. By smoothing the maps we are capturing the contribution of faint (undetected in K_S ~ 23.4) sources that are physically associated, or correlated, with the detected sources. We find that the cumulative CIB increases with increased smoothing, reaching 9.82 +- 0.78, 5.77 +- 0.43, and 2.32 +- 0.19nWm2sr1\, \rm nW m^{-2} sr^{-1} at 250, 350, and 500 {\mu}m at 300 arcsec FWHM. This corresponds to a fraction of the fiducial CIB of 0.94 +- 0.23, 1.07 +- 0.31, and 0.97 +- 0.26 at 250, 350, and 500 {\mu}m, where the uncertainties are dominated by those of the absolute CIB. We then propose, with a simple model combining parametric descriptions for stacked flux densities and stellar mass functions, that emission from galaxies with log(M/Msun) > 8.5 can account for the most of the measured total intensities, and argue against contributions from extended, diffuse emission. Finally, we discuss prospects for future survey instruments to improve the estimates of the absolute CIB levels, and observe any potentially remaining emission at z > 4.Comment: Accepted to ApJL. 6 Pages, 3 figure

    The Allen Telescope Array

    Get PDF
    The Allen Telescope Array, originally called the One Hectare Telescope (1hT) [1] will be a large array radio telescope whose novel characteristics will be a wide field of view (3.5 deg-GHz HPBW), continuous frequency coverage of 0.5 - 11 GHz, four dual-linear polarization output bands of 100 MHz each, four beams in each band, two 100 MHz spectral correlators for two of the bands, and hardware for RFI mitigation built in. Its scientific motivation is for deep SETI searches and, at the same time, a variety of other radio astronomy projects, including transient (e.g. pulsar) studies, HI mapping of the Milky Way and nearby galaxies, Zeeman studies of the galactic magnetic field in a number of transitions, mapping of long chain molecules in molecular clouds, mapping of the decrement in the cosmic background radiation toward galaxy clusters, and observation of HI absorption toward quasars at redshifts up to z=2. The array is planned for 350 6.1-meter dishes giving a physical collecting area of about 10,000 square meters. The large number of components reduces the price with economies of scale. The front end receiver is a single cryogenically cooled MIMIC Low Noise Amplifier covering the whole band. The feed is a wide-band log periodic feed of novel design, and the reflector system is an offset Gregorian for minimum sidelobes and spillover. All preliminary and critical design reviews have been completed. Three complete antennas with feeds and receivers are under test, and an array of 33 antennas is under construction at the Hat Creek Radio Observatory for the end of 2004. The present plan is to have a total of about 200 antennas completed by the summer of 2006 and the balance of the array finished before the end of the decade

    A Sample of Ultra Steep Spectrum Sources Selected from the Westerbork In the Southern Hemisphere (WISH) survey

    Get PDF
    The 352 MHz Westerbork In the Southern Hemisphere (WISH) survey is the southern extension of the WENSS, covering 1.60 sr between -9 < DEC < -26 to a limiting flux density of ~18 mJy (5sigma). Due to the very low elevation of the observations, the survey has a much lower resolution in declination than in right ascension (54" x 54"cosec(DEC)). A correlation with the 1.4 GHz NVSS shows that the positional accuracy is less constrained in declination than in right ascension, but there is no significant systematic error. We present a source list containing 73570 sources. We correlate this WISH catalogue with the NVSS to construct a sample of faint Ultra Steep Spectrum (USS) sources, which is accessible for follow-up studies with large optical telescopes in the southern hemisphere. This sample is aimed at increasing the number of known high redshift radio galaxies to allow detailed follow-up studies of these massive galaxies and their environments in the early Universe.Comment: 12 Pages, including 5 PostScript figures. Accepted for publication in Astronomy & Astrophysics. The full WISH catalog with 73570 sources is available from http://www.strw.leidenuniv.nl/wenss

    HerMES: the rest-frame UV emission and a lensing model for the z= 6.34 luminous dusty starburst galaxy HFLS3

    Get PDF
    We discuss the rest-frame ultraviolet emission from the starbursting galaxy HFLS3 at a redshift of 6.34. The galaxy was discovered in Herschel/SPIRE data due to its red color in the submillimeter wavelengths from 250 to 500 μm. Keck/NIRC2 K s -band adaptive optics imaging data showed two potential near-IR counterparts near HFLS3. Previously, the northern galaxy was taken to be in the foreground at z = 2.1, while the southern galaxy was assumed to be HFLS3's near-IR counterpart. The recently acquired Hubble/WFC3 and Advanced Camera for Surveys (ACS) imaging data show conclusively that both optically bright galaxies are in the foreground at z < 6. A new lensing model based on the Hubble imaging data and the millimeter-wave continuum emission yields a magnification factor of 2.2 ± 0.3, with a 95% confidence upper limit on the magnification of 3.5. When corrected for lensing, the instantaneous star formation rate is 1320 M ☉ yr–1, with the 95% confidence lower limit around 830 M ☉ yr–1. The dust and stellar masses of HFLS3 from the same spectral energy distribution (SED) models are at the level of 3 × 108 M ☉ and ~5 × 1010 M ☉, respectively, with large systematic uncertainties on assumptions related to the SED model. With Hubble/WFC3 images, we also find diffuse near-IR emission about 0.5 arcsec (~3 kpc) to the southwest of HFLS3 that remains undetected in the ACS imaging data. The emission has a photometric redshift consistent with either z ~ 6 or a dusty galaxy template at z ~ 2

    A Bright Submillimeter Source in the Bullet Cluster (1E0657--56) Field Detected with BLAST

    Get PDF
    We present the 250, 350, and 500 micron detection of bright submillimeter emission in the direction of the Bullet Cluster measured by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). The 500 micron centroid is coincident with an AzTEC 1.1 mm point-source detection at a position close to the peak lensing magnification produced by the cluster. However, the 250 micron and 350 micron centroids are elongated and shifted toward the south with a differential shift between bands that cannot be explained by pointing uncertainties. We therefore conclude that the BLAST detection is likely contaminated by emission from foreground galaxies associated with the Bullet Cluster. The submillimeter redshift estimate based on 250-1100 micron photometry at the position of the AzTEC source is z_phot = 2.9 (+0.6 -0.3), consistent with the infrared color redshift estimation of the most likely IRAC counterpart. These flux densities indicate an apparent far-infrared luminosity of L_FIR = 2E13 Lsun. When the amplification due to the gravitational lensing of the cluster is removed, the intrinsic far-infrared luminosity of the source is found to be L_FIR <= 10^12 Lsun, consistent with typical luminous infrared galaxies.Comment: Accepted for publication in the Astrophysical Journal. Maps are available at http://blastexperiment.info

    The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field

    Get PDF
    The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array. PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5-year campaign, PiGSS will twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the sky will be observed multiple times to characterize variability on time scales of days to years. We present here observations of a 10 deg^2 region in the Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The PiGSS image was constructed from 75 daily observations distributed over a 4-month period and has an rms flux density between 200 and 250 microJy. This represents a deeper image by a factor of 4 to 8 than we will achieve over the entire 10,000 deg^2. We provide flux densities, source sizes, and spectral indices for the 425 sources detected in the image. We identify ~100$ new flat spectrum radio sources; we project that when completed PiGSS will identify 10^4 flat spectrum sources. We identify one source that is a possible transient radio source. This survey provides new limits on faint radio transients and variables with characteristic durations of months.Comment: Accepted for publication in ApJ; revision submitted with extraneous figure remove

    Over half of the far-infrared background light comes from galaxies at z >= 1.2

    Full text link
    Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 <= z <= 4, these massive submillimetre galaxies go through a phase characterized by optically obscured star formation at rates several hundred times that in the local Universe. Half of the starlight from this highly energetic process is absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K with spectral energy distributions peaking at 100 microns in the rest frame. At 1 <= z <= 4, the peak is redshifted to wavelengths between 200 and 500 microns. The cumulative effect of these galaxies is to yield extragalactic optical and far-infrared backgrounds with approximately equal energy densities. Since the initial detection of the far-infrared background (FIRB), higher-resolution experiments have sought to decompose this integrated radiation into the contributions from individual galaxies. Here we report the results of an extragalactic survey at 250, 350 and 500 microns. Combining our results at 500 microns with those at 24 microns, we determine that all of the FIRB comes from individual galaxies, with galaxies at z >= 1.2 accounting for 70 per cent of it. As expected, at the longest wavelengths the signal is dominated by ultraluminous galaxies at z > 1.Comment: Accepted to Nature. Maps available at http://blastexperiment.info

    BLAST Observations of the South Ecliptic Pole field: Number Counts and Source Catalogs

    Get PDF
    We present results from a survey carried out by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) on a 9 deg^2 field near the South Ecliptic Pole at 250, 350 and 500 {\mu}m. The median 1{\sigma} depths of the maps are 36.0, 26.4 and 18.4 mJy, respectively. We apply a statistical method to estimate submillimeter galaxy number counts and find that they are in agreement with other measurements made with the same instrument and with the more recent results from Herschel/SPIRE. Thanks to the large field observed, the new measurements give additional constraints on the bright end of the counts. We identify 132, 89 and 61 sources with S/N>4 at 250, 350, 500 {\mu}m, respectively and provide a multi-wavelength combined catalog of 232 sources with a significance >4{\sigma} in at least one BLAST band. The new BLAST maps and catalogs are available publicly at http://blastexperiment.info.Comment: 25 pages, 6 figures, 4 tables, Accepted by ApJS. Maps and catalogs available at http://blastexperiment.info
    corecore