57 research outputs found

    PRE-binding sites in the MDR of CLL: Potential Tumor Suppressor Regulation

    Get PDF
    Chronic lymphocytic leukemia [CLL] is the most common adult leukemia and is heterogeneous in clinical presentation. CLL cases present with various chromosomal aberrations, including 11q23, 14q32, 17p, and trisomy 12, with the most common abnormality being deletion of 13q14 [1]. Although monoallelic deletion of 13q14 is common, there is a subset of patients who have complete nullisomy at 13q14, a locus that has been hypothesized to contribute to CLL pa thogenesis [2] due to loss of tumor suppressors [DLEU and miR-15a/16-1].We hypothesized that deletion of both copies of 13q14 would lead to uncontrollable proliferation of CLL cells and a poor prognosis. We examined our 13q14 nullisomy for survival, treatment-free survival, lymphocyte doubling time, and the presence of lymphadenopathy. Furthermore, we compared the gene expression profiles between patients with 13q14 monosomy, nullisomy, or normal karyotype. Our results suggest that patients with 13q nullisomy have a higher incidence of bulky lymphadenopathy [16.6% compared to 10% of monosomy patients], a higher frequency of lymphocyte doubling time [27.7% compared to 7.4% of monosomy patients], and a higher rate of needing treatment [50% compared to 18.5% of monosomy patients]. We observed deletion of DLEU1 and HTR2A, consistent with a gene dosage effect, and observed PRE-binding sites on DLEU1. Patients with homozygous deletion of 13q14 had a worse prognosis compared to heterozygotes. Lastly, the DLEU1 locus is a possible “second hit” loss for CLL progression

    Phase I/II Study of Bortezomib-BEAM and Autologous Hematopoietic Stem Cell Transplantation for Relapsed Indolent Non-Hodgkin Lymphoma, Transformed, or Mantle Cell Lymphoma

    Get PDF
    AbstractA phase I/II trial was designed to evaluate the safety and efficacy of adding bortezomib to standard BEAM (BCNU, etoposide, cytarabine, melphalan) and autologous hematopoietic stem cell transplantation (ASCT). Eligible patients had relapsed/refractory indolent or transformed non-Hodgkin lymphoma or mantle cell lymphoma (MCL) that was relapsed/refractory or in first partial (PR) or complete remission (CR). Patients received bortezomib on days −11, −8, −5, and −2 before ASCT. Phase I had 4 dose cohorts (.8, 1, 1.3, and 1.5 mg/m2) and 3 patients were accrued to each. Any nonhematological ASCT-related toxicity >2 on the Bearman scale occurring between day −11 and engraftment defined the maximum tolerated dose (MTD). After the MTD has been reached, another 20 patients were enrolled at this dose to determine a preliminary overall response rate (ORR). Patients who were in CR or PR at day +100 were considered responders. The study enrolled 42 patients through August 14, 2009. The median age was 58 (range, 34 to 73) years, with 33 males and 9 females. The most common diagnoses were MCL (23 patients) and follicular lymphoma (7 patients). The median number of prior therapies was 1 (range, 0 to 6). The median follow-up was 4.88 (range, 1.07 to 6.98) years. Thirteen patients were treated in phase I and 29 patients were treated in phase II. The MTD was initially determined to be 1.5 mg/m2 but it was later decreased to 1 mg/m2 because of excessive gastrointestinal toxicity and peripheral neuropathy. The ORR was 95% at 100 days and 87% at 1 year. For all 38 evaluable patients at 1 year, responses were CR 84%, PR 1%, and progressive disease 13%. Progression-free survival (PFS) was 83% (95% CI, 68% to 92%) at 1 year, and 32% (15% to 51%) at 5 years. Overall survival (OS) was 91% (95% CI, 79% to 96%) at 1 year and 67% (50% to 79%) at 5 years. The most common National Cancer Institute grade 3 toxicities were neutropenic fever (59%), anorexia (21%), peripheral neuropathy (19%), orthostatic hypotension/vasovagal syncope (16%), and 1 patient failed to engraft. Compared with 26 MCL in CR1 historic controls treated with BEAM and ASCT, PFS was 85% and 43% for the BEAM group versus 87% and 57% for those who received bortezomib in addition to standard BEAM (V-BEAM) at 1 and 5 years, respectively (log-rank P = .37). OS was 88% and 50% for the BEAM group versus 96% and 72% for V-BEAM at 1 and 5 years, respectively (log-rank P = .78). In conclusion, V-BEAM and ASCT is feasible. The toxicities were manageable and we did not observe any treatment-related mortalities; however, we did observe an excess of autonomic dysfunction and ileus, which is concerning for overlapping toxicity with BEAM conditioning. Determining relative efficacy of V-BEAM compared to BEAM would require a randomized trial

    Chronic Lymphocytic Leukemia Cells in a Lymph Node Microenvironment Depict Molecular Signature Associated with an Aggressive Disease

    Get PDF
    Chronic lymphocytic leukemia (CLL) cells survive longer in vivo than in vitro, suggesting that the tissue microenvironment provides prosurvival signals to tumor cells. Primary and secondary lymphoid tissues are involved in the pathogenesis of CLL, and the role of these tissue microenvironments has not been explored completely. To elucidate host-tumor interactions, we performed gene expression profiling (GEP) of purified CLL cells from peripheral blood (PB; n = 20), bone marrow (BM; n = 18), and lymph node (LN; n = 15) and validated key pathway genes by real-time polymerase chain reaction, immunohistochemistry and/or TCL1 trans-genic mice. Gene signatures representing several pathways critical for survival and activation of B cells were altered in CLL cells from different tissue compartments. Molecules associated with the B-cell receptor (BCR), B cell-activating factor/a proliferation-inducing ligand (BAFF/APRIL), nuclear factor (NF)-κB pathway and immune suppression signature were enriched in LN-CLL, suggesting LNs as the primary site for tumor growth. Immune suppression genes may help LN-CLL cells to modulate antigen-presenting and T-cell behavior to suppress antitumor activity. PB CLL cells overexpressed chemokine receptors, and their cognate ligands were enriched in LN and BM, suggesting that a chemokine gradient instructs B cells to migrate toward LN or BM. Of several chemokine ligands, the expression of CCL3 was associated with poor prognostic factors. The BM gene signature was enriched with antiapoptotic, cytoskeleton and adhesion molecules. Interestingly, PB cells from lymphadenopathy patients shared GEP with LN cells. In Eμ-TCL1 transgenic mice (the mouse model of the disease), a high percentage of leukemic cells from the lymphoid compartment express key BCR and NF-κB molecules. Together, our findings demonstrate that the lymphoid microenvironment promotes survival, proliferation and progression of CLL cells via chronic activation of BCR, BAFF/APRIL and NF-κB activation while suppressing the immune response

    Primary diffuse large B-cell lymphoma of the breast: prognostic factors and outcomes of a study by the International Extranodal Lymphoma Study Group

    Get PDF
    Background: Primary diffuse large B-cell lymphoma (DLBCL) of breast is rare. We aimed to define clinical features, prognostic factors, patterns of failure, and treatment outcomes. Patients and methods: A retrospective international study of 204 eligible patients presenting to the International Extranodal Lymphoma Study Group-affiliated institutions from 1980 to 2003. Results: Median age was 64 years, with 95% of patients presenting with unilateral disease. Median overall survival (OS) was 8.0 years, and median progression-free survival 5.5 years. In multifactor analysis, favourable International Prognostic Index score, anthracycline-containing chemotherapy, and radiotherapy (RT) were significantly associated with longer OS (each P ≤ 0.03). There was no benefit from mastectomy, as opposed to biopsy or lumpectomy only. At a median follow-up time of 5.5 years, 37% of patients had progressed—16% in the same or contralateral breast, 5% in the central nervous system, and 14% in other extranodal sites. Conclusions: The combination of limited surgery, anthracycline-containing chemotherapy, and involved-field RT produced the best outcome in the pre-rituximab era. A prospective trial on the basis of these results should be pursued to confirm these observations and to determine whether the impact of rituximab on the patterns of relapse and outcome parallels that of DLBCL presenting at other site

    Integrative Analysis of Clinicopathological Features Defines Novel Prognostic Models for Mantle Cell Lymphoma in the Immunochemotherapy Era: A Report from The North American Mantle Cell Lymphoma Consortium

    Get PDF
    BACKGROUND: Patients with mantle cell lymphoma (MCL) exhibit a wide variation in clinical presentation and outcome. However, the commonly used prognostic models are outdated and inadequate to address the needs of the current multidisciplinary management of this disease. This study aims to investigate the clinical and pathological features of MCL in the immunochemotherapy era and improve the prognostic models for a more accurate prediction of patient outcomes. METHODS: The North American Mantle Cell Lymphoma Project is a multi-institutional collaboration of 23 institutions across North America to evaluate and refine prognosticators for front-line therapy. A total of 586 MCL cases diagnosed between 2000 and 2012 are included in this study. A comprehensive retrospective analysis was performed on the clinicopathological features, treatment approaches, and outcomes of these cases. The establishment of novel prognostic models was based on in-depth examination of baseline parameters, and subsequent validation in an independent cohort of MCL cases. RESULTS: In front-line strategies, the use of hematopoietic stem cell transplantation was the most significant parameter affecting outcomes, for both overall survival (OS, p \u3c 0.0001) and progression-free survival (PFS, p \u3c 0.0001). P53 positive expression was the most significant pathological parameter correlating with inferior outcomes (p \u3c 0.0001 for OS and p = 0.0021 for PFS). Based on the baseline risk factor profile, we developed a set of prognostic models incorporating clinical, laboratory, and pathological parameters that are specifically tailored for various applications. These models, when tested in the validation cohort, exhibited strong predictive power for survival and showed a stratification resembling the training cohort. CONCLUSIONS: The outcome of patients with MCL has markedly improved over the past two decades, and further enhancement is anticipated with the evolution of clinical management. The innovative prognostic models developed in this study would serve as a valuable tool to guide the selection of more suitable treatment strategies for patients with MCL

    Multilineage hematopoietic recovery with concomitant antitumor effects using low dose Interleukin-12 in myelosuppressed tumor-bearing mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interleukin-12 (IL-12) is a cytokine well known for its role in immunity. A lesser known function of IL-12 is its role in hematopoiesis. The promising data obtained in the preclinical models of antitumor immunotherapy raised hope that IL-12 could be a powerful therapeutic agent against cancer. However, excessive clinical toxicity, largely due to repeat dose regimens, and modest clinical response observed in the clinical trials have pointed to the necessity to design protocols that minimize toxicity without affecting the anti-tumor effect of IL-12. We have focused on the lesser known role of IL-12 in hematopoiesis and hypothesized that an important clinical role for IL-12 in cancer may be as an adjuvant hematological cancer therapy. In this putative clinical function, IL-12 is utilized for the prevention of cancer therapy-related cytopenias, while providing concomitant anti-tumor responses over and above responses observed with the primary therapy alone. This putative clinical function of IL-12 focuses on the dual role of IL-12 in hematopoiesis and immunity.</p> <p>Methods</p> <p>We assessed the ability of IL-12 to facilitate hematopoietic recovery from radiation (625 rad) and chemotherapy (cyclophosphamide) in two tumor-bearing murine models, namely the EL4 lymphoma and the Lewis lung cancer models. Antitumor effects and changes in bone marrow cellularity were also assessed.</p> <p>Results</p> <p>We show herein that carefully designed protocols, in mice, utilizing IL-12 as an adjuvant to radiation or chemotherapy yield facile and consistent, multilineage hematopoietic recovery from cancer therapy-induced cytopenias, as compared to vehicle and the clinically-utilized cytokine granulocyte colony-stimulating factor (G-CSF) (positive control), while still providing concomitant antitumor responses over and above the effects of the primary therapy alone. Moreover, our protocol design utilizes single, low doses of IL-12 that did not yield any apparent toxicity.</p> <p>Conclusion</p> <p>Our results portend that despite its past failure, IL-12 appears to have significant clinical potential as a hematological adjuvant cancer therapy.</p

    Histone deacetylase inhibitors: clinical implications for hematological malignancies

    Get PDF
    Histone modifications have widely been implicated in cancer development and progression and are potentially reversible by drug treatments. The N-terminal tails of each histone extend outward through the DNA strand containing amino acid residues modified by posttranslational acetylation, methylation, and phosphorylation. These modifications change the secondary structure of the histone protein tails in relation to the DNA strands, increasing the distance between DNA and histones, and thus allowing accessibility of transcription factors to gene promoter regions. A large number of HDAC inhibitors have been synthesized in the last few years, most being effective in vitro, inducing cancer cells differentiation or cell death. The majority of the inhibitors are in clinical trials, unlike the suberoylanilide hydroxamic acid, a pan-HDACi, and Romidepsin (FK 228), a class I-selective HDACi, which are only approved in the second line treatment of refractory, persistent or relapsed cutaneous T-cell lymphoma, and active in approximately 150 clinical trials, in monotherapy or in association. Preclinical studies investigated the use of these drugs in clinical practice, as single agents and in combination with chemotherapy, hypomethylating agents, proteasome inhibitors, and MTOR inhibitors, showing a significant effect mostly in hematological malignancies. The aim of this review is to focus on the biological features of these drugs, analyzing the possible mechanism(s) of action and outline an overview on the current use in the clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore