686 research outputs found

    Invasive fungal infections secondary to traumatic injury

    Get PDF
    Invasive fungal infection (IFI) is a rare but serious complication of traumatic injury. The purpose of this article is to review the epidemiology, natural history, mycology, risk factors, diagnosis, treatment, and outcomes associated with post-traumatic IFI in military and civilian populations. The epidemiology of post-traumatic IFI is poorly characterized, but incidence appears to be rising. Patients often suffer from severe injuries and require extensive medical interventions. Fungi belonging to the order Mucorales are responsible for most post-traumatic IFI in both civilian and military populations. Risk factors differ between these cohorts but include specific injury patterns and comorbidities. Diagnosis of post-traumatic IFI typically follows positive laboratory results in the appropriate clinical context. The gold standard of treatment is surgical debridement in addition to systemic antifungal therapy. Patients with post-traumatic IFI may be at greater risk of amputation, delays in wound healing, hospital complications, and death as compared to trauma patients who do not develop IFI. More research is needed to understand the factors surrounding the development and management of post-traumatic IFI to reduce the significant morbidity and mortality associated with this disease

    From Cooperative Self-Assembly to Water-Soluble Supramolecular Polymers Using Coarse-Grained Simulations

    Get PDF
    Supramolecular polymers, formed via noncovalent self-assembly of elementary monomers, are extremely interesting for their dynamic bioinspired properties. In order to understand their behavior, it is necessary to access their dynamics while maintaining high resolution in the treatment of the monomer structure and monomer-monomer interactions, which is typically a difficult task, especially in aqueous solution. Focusing on 1,3,5-benzenetricarboxamide (BTA) water-soluble supramolecular polymers, we have developed a transferable coarse-grained model that allows studying BTA supramolecular polymerization in water, while preserving remarkable consistency with the atomistic models in the description of the key interactions between the monomers (hydrophobic, H-bonding, etc.), self-assembly cooperativity, and amplification of order into the growing fibers. This permitted us to monitor the amplification of the key interactions between the monomers (including H-bonding) in the BTA fibers during the dynamic polymerization process. Our molecular dynamics simulations provide a picture of a stepwise cooperative polymerization mechanism, where initial fast hydrophobic aggregation of the BTA monomers in water is followed by the slower reorganization of these disordered aggregates into ordered directional oligomers. Supramolecular polymer growth then proceeds on a slower time scale. We challenged our models via comparison with the experimental evidence, capturing the effect of temperature variations and subtle changes in the monomer structure on the polymerization and on the properties of the fibers seen in the real systems. This work provides a multiscale spatiotemporal characterization of BTA self-assembly in water and a useful platform to study a variety of BTA-based supramolecular polymers toward structure-property relationships

    Effect of Concentration on the Supramolecular Polymerization Mechanism via Implicit-Solvent Coarse-Grained Simulations of Water-Soluble 1,3,5-Benzenetricarboxamide

    Get PDF
    We report an implicit-solvent coarse-grained (CG) model for a water-soluble 1,3,5-benzenetricarboxamide (BTA) supramolecular polymer. The technical advances guaranteed by this CG model allow simulation of the self-assembly of 1000 BTA monomers and easy variation of the BTA concentration into the system down to experimental dilute conditions. In this way, we can monitor the mechanism of supramolecular polymerization as a function of the concentration at submolecular resolution exceeding the microsecond time scale. While increasing the concentration produces rapid formation of large disordered clusters that are then converted into BTA fibers, moving to very dilute concentrations favors early ordering of the oligomers in solution even at small sizes. Interestingly, we observe that below a certain concentration the oligomers that dynamically grow in solution during the self-assembly present the same level (and amplification) of order of prestacked equilibrated oligomers of the same size, meaning that concentration-dependent kinetic effects have disappeared from the polymerization mechanism

    A Lemaitre-Tolman-Bondi cosmological wormhole

    Full text link
    We present a new analytical solution of the Einstein field equations describing a wormhole shell of zero thickness joining two Lema{\i}tre-Tolman-Bondi universes, with no radial accretion. The material on the shell satisfies the energy conditions and, at late times, the shell becomes comoving with the dust-dominated cosmic substratum.Comment: 5 pages, latex, no figures, to appear in Phys. Rev.

    Matrix Elements without Quark Masses on the Lattice

    Full text link
    We introduce a new parameterization of four-fermion matrix elements which does not involve quark masses and thus allows a reduction of systematic uncertainties in physical amplitudes. As a result the apparent quadratic dependence of e'/e on m_s is removed. To simplify the matching between lattice and continuum renormalization schemes, we express our results in terms of Renormalization Group Invariant B-parameters which are renormalization-scheme and scale independent. As an application of our proposal, matrix elements of DeltaI=3/2 and SUSY DeltaF=2 (F=S,C,BF=S,C,B) four-fermion operators have been computed.Comment: LATTICE99(Matrix Elements), 3 pages, 1 figure, BUHEP-99-2

    Into the dynamics of a supramolecular polymer at submolecular resolution

    Get PDF
    To rationally design supramolecular polymers capable of self-healing or reconfiguring their structure in a dynamically controlled way, it is imperative to gain access into the intrinsic dynamics of the supramolecular polymer (dynamic exchange of monomers) while maintaining a high-resolution description of the monomer structure. But this is prohibitively difficult at experimental level. Here we show atomistic, coarse-grained modelling combined with advanced simulation approaches to characterize the molecular mechanisms and relative kinetics of monomer exchange in structural variants of a synthetic supramolecular polymer in different conditions. We can capture differences in supramolecular dynamics consistent with the experimental observations, revealing that monomer exchange in and out the fibres originates from the defects present in their supramolecular structure. At the same time, the submolecular resolution of this approach offers a molecular-level insight into the dynamics of these bioinspired materials, and a flexible tool to obtain structure-dynamics relationships for a variety of polymeric assemblies

    Note: Energy convexity and density matrices in molecular systems

    Get PDF
    A novel appropriate definition for the density matrix for an interacting Coulombic driven atomic or molecular system with non-integer number of particles is given. Our approach leads to a direct derivation of the proposal reported by Perdew et al. [Phys. Rev. Lett. 49, 1691 (1982)]10.1103/PhysRevLett.49.1691 and points out its suitability and perspective advances.Fil: Bochicchio, Roberto Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentin

    Bibliografia

    Get PDF

    Growth parameters and meat quality of pigs fed diets containing high oleic sunflower oil

    Get PDF
    The aim of the trial was to evaluate the effects of the dietary addition of a 3% sunflower oil containing high-oleic and low-linoleic acid levels (HOSO), supplemented or not with vitamin E, on heavy pig production parameters (growth, meat quality and fatty acid composition of ham subcutaneous fat). 64 Duroc x Large White pigs were allotted to four group (Control, Control plus vitamin E, 3% HOSO and 3% HOSO plus vitamin E). Regardless of vitamin E supplementation, our results indicate that a 3% addition of HOSO has no effect both on growth parameters and carcass and fresh meat quality. HOSO dietary addition resulted in a higher (P<0.001) level of oleic acid and in lower levels of palmitic and stearic acids in the subcutaneous fat. Furthermore, fat deriving from pigs on HOSO diets showed a higher (P<0.001) iodine value. Nevertheless, linoleic acid level and iodine value did not exceed the maximum allowed for long-curing PDO hams
    • …
    corecore