
Note: Energy convexity and density matrices in molecular systems
Roberto C. Bochicchio and Diego Rial 
 
Citation: J. Chem. Phys. 137, 226101 (2012); doi: 10.1063/1.4771955 
View online: http://dx.doi.org/10.1063/1.4771955 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v137/i22 
Published by the AIP Publishing LLC. 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

Downloaded 08 Sep 2013 to 157.92.4.12. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://jcp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1042240683/x01/AIP-PT/Goodfellow_JCPCoverPg_090413/NEW_Goodfellow_banner.jpeg/6c527a6a7131454a5049734141754f37?x
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Roberto C. Bochicchio&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Diego Rial&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4771955?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v137/i22?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 137, 226101 (2012)

Note: Energy convexity and density matrices in molecular systems
Roberto C. Bochicchio1,a) and Diego Rial2
1Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and
Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad
Universitaria, 1428 Buenos Aires, Argentina
2Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and
Instituto de Investigaciones Matemáticas “Luis A Santaló,” Consejo Nacional de Investigaciones Científicas y
Técnicas, Ciudad Universitaria, 1428 Buenos Aires, Argentina

(Received 10 October 2012; accepted 28 November 2012; published online 12 December 2012)

[http://dx.doi.org/10.1063/1.4771955]

From the onset of the Perdew, Parr, Levy, and Balduz
(PPLB)1 proposal for the energy of a molecular system in-
volving a non-integer number of electrons and its immedi-
ate consequences, several applications have become familiar
within the density functional theory (DFT) formalism.2 How-
ever, to our knowledge, no attempts have been made to justify
its use for other type of state-functions from which the elec-
tron density is derived, i.e., beyond DFT. Our main purpose
here is to derive the above mentioned proposal by making use
of the energy convex property of the energy for Coulombic
interactions in atomic and molecular systems, extending the
treatment to the most general form of the density matrix of
the system for any type of state-function. In what follows we
will adopt the following notations:

(1) FM : M −particle Hilbert space,
(2) F = ⊕∞

M=0 FM : Fock space,
(3) |�M

k >: kth M-electron pure state of a M-electron system
in the antisymmetric M-electron Hilbert space; Hamilto-
nian eigenstates,

(4) D = ∑
M

∑
�M

k
ω�M

k
|�M

k 〉〈�M
k |, ∑

M

∑
�M

k
ω�M

k
= 1,

ω�M
k

≥ 0: density matrix (DM) defining the states of the
system (grand-canonical type),

(5) ND = ∑
�N

k
ω�N

k
|�N

k 〉〈�N
k |; ∑

�N
k

ω�N
k

= 1; ω�N
k

≥ 0
(canonical type), and

(6) ND�N
k

= |�N
k 〉〈�N

k | (micro-canonical or pure state) and
ω�M

k
the corresponding statistical weights for each |�M

k 〉
pure state.

To describe the energy dependence of the system with the
particle number let us introduce the most general state, which
admits a non-integer number of particles, by means of a den-
sity matrix in Fock space, D ∈ ⊕∞

M=0 FM . The energy deter-
mined as the average of the Hamiltonian over this distribution
is given by3, 4

Ē = Tr (D H) =
∑
{�M

k }
ω�M

k
Tr

(
MD�M

k
H

)
, (1)

where H stands for the Hamiltonian operator of the system
and Tr for the mathematical trace operation. Let MD0 be the
DM of a non-degenerate or removable degenerate ground
state5, 6 of the M-particle system, EM

0 = Tr(MD0 H), its energy
and �M = EM−1

0 − EM
0 , the lowest energy difference, i.e., the

first ionization potential of the atomic or molecular system.

Assuming M > 1, the inequality, �M > �M + 1 > 0, i.e., the
convex hypothesis for the molecular energy,1, 2 implies the
following.

Lemma 1. For the sequence {EM
0 }M∈N verifying the

above inequality, and arbitrary N,M ∈ N numbers, such that
M �= N, N+1, then

EM
0 ≥ (N + 1 − M) EN

0 + (M − N ) EN+1
0 . (2)

The equality holds iff M = N, N+1.

Proof. It is immediate to see that the equality holds for
M = N, N+1. Let us consider the case for M = N+1+p,
p ∈ N, p > 1. We will derive the above statement by apply-
ing the induction procedure for the variable p. For p = 1, i.e.,
M = N+2, and �N+1 > �N+2, EN+2

0 > −EN
0 + 2EN+1

0 fol-
lows; then the hypothesis �N+1 > �N+2+p, leads to

EN+2+p

0 > EN+1+p

0 + EN+1
0 − EN

0 ,

which jointly with the inductive hypothesis lead to

EN+2+p

0 > (p + 1) EN+1
0 − pEN

0 + EN+1
0 − EN

0

= (p + 2) EN+1
0 − (p + 1) EN

0 ,

which probes the case for M > N + 1. To complete this deriva-
tion let us consider the case M = N − p; hence for p = 1 it
follows that EN−1

0 > 2EN
0 − EN+1

0 and also applying the in-
ductive method, it follows that

EN−p−1
0 > EN−p

0 + EN
0 − EN+1

0

> (p + 1) EN
0 − pEN+1

0 + EN
0 − EN+1

0

= (p + 2) EN
0 − (p + 1) EN+1

0 ,

which completes the derivation. �
Equation (2) is the expression of the convexity for the

energy; hence to obtain the ground state energy for the system
of a non-integer number, N + ν with N ∈ N and ν ∈ (0, 1)
we may use the variational principle introducing explicitly the
number of particles as a constrain in the following way:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min E =
∑
{�M

k }
ω�M

k
Tr

(
MD�M

k
H

)

∑
{�M

k }
ω�M

k
M = N + ν.

(3)
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Proposition 1: The solution of this problem, i.e.,
D = ∑

M

∑
�M

k
ω�M

k

MD�M
k

where the variational parameters
are the statistical weights {ω�M

k
}, is unique and become ex-

pressed by

D = (1 − ν) ND0 + ν N+1D0. (4)

Proof. Regarding the inequality EM
0 ≤ Tr (MD�M

k
H), for

the ground state of the system, and adding over the whole
Fock space of the ground states, it follows:
∑
{�M

o }
ω�M

o
EM

0 =
∑
{�M

o }
ω�M

o
Tr(MD0 H)≤

∑
{�M

k }
ω

�M
k

Tr
(
MD�M

k
H

)
,

and assuming the hypothesis that the ground states are non-
degenerate or removable degenerate,5, 6 the minimum value
only can be reached by a convex combination of these ground
states. Then from Lemma 1,

∑
{�M

o }
ω�M

o
EM

0 ≥
∑
{�M

o }
ω�M

o
(N + 1 − M) EN

0

+
∑
{�M

o }
ω�M

o
(M − N ) EN+1

0

= (1 − ν) EN
0 + νEN+1

0

(5)

is obtained, where we have defined two convex co-
efficients as

∑
{�M

o } ω�M
o

(N + 1 − M) = 1 − ν and∑
{�M

o } ω�M
o

(M − N ) = ν, because of the hypothesis
constraint for the number of particles. Also for any M �= N, N
+ 1 and their associated ω�M

o
> 0, the inequality would be

strict and then the proof is complete. �
Therefore, the rhs of Eq. (5) stands for the energy of the

systems with non-integer number of particles, N + ν which
reads as

EN+ν
0 = (1 − ν) EN

0 + νEN+1
0 . (6)

Equation (6) constitutes the PPBL proposal for the energy in-
volving a non-integer number of particles but in the present
case, as no hypothesis has been invoked about the approach
to obtain the state functions, the results in this report are valid
for any type of state-function and consequently for the corre-
sponding DM structure7 expressed by Eq. (4), i.e., indepen-
dent particle or correlated.

The units in the molecular structure, i.e., physical do-
mains likewise atoms, functional groups or moieties, share
the feature of possessing a non-integer number of electrons,
which may be interpreted as a time average in a given quan-
tum state of an open system and because they are involved
in the chemical processes, essentially exchange electrons be-
tween them.1 Hence, the description of the behaviour of
such domains is performed not only by means of their fun-
damental magnitudes like the energy and density, but also
their derivatives, as chemical potential, Fukui functions (re-
activity), electronegativity, among others,2 which are the ad-
equate physico-chemical magnitudes that naturally incorpo-
rate the mentioned changes in the number of particles and
are at the very basis of the definitions of these descriptors.2

Therefore, beyond DFT, the proper scenario for the descrip-
tion of the electronic changes is that of the reduced density
matrices, p-RDMs6 which in this case are obtained by the
contracting mapping of the grand-canonical DM8 and then
it opens the way to generalize the mentioned descriptors in
terms of the RDMs. Consequently, this form also enables
incorporating the effects of correlation in an explicit way
to them. Work in this direction is being carried out in our
laboratory.
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