509 research outputs found

    Mapping the Local Halo: Statistical Parallax Analysis of SDSS Low-Mass Subdwarfs

    Get PDF
    We present a statistical parallax study of nearly 2000 M subdwarfs with photometry and spectroscopy from the Sloan Digital Sky Survey (SDSS). Statistical parallax analysis yields the mean absolute magnitudes, mean velocities, and velocity ellipsoids for homogenous samples of stars. We selected homogeneous groups of subdwarfs based on their photometric colors and spectral appearance. We examined the color–magnitude relations of low-mass subdwarfs and quantified their dependence on the newly refined metallicity parameter, ζ. We also developed a photometric metallicity parameter, ÎŽ(g − r), based on the g − r and r − z colors of low-mass stars and used it to select stars with similar metallicities. The kinematics of low-mass subdwarfs as a function of color and metallicity were also examined and compared to main-sequence M dwarfs. We find that the SDSS subdwarfs share similar kinematics to the inner halo and thick disk. The color–magnitude relations derived in this analysis will be a powerful tool for identifying and characterizing low-mass metal-poor subdwarfs in future surveys such as Gaia and LSST, making them important and plentiful tracers of the stellar halo

    A New Sample of Cool Subdwarfs from SDSS: Properties and Kinematics

    Get PDF
    We present a new sample of M subdwarfs compiled from the 7th data release of the Sloan Digital Sky Survey. With 3517 new subdwarfs, this new sample significantly increases the number of spectroscopically confirmed low-mass subdwarfs. This catalog also includes 905 extreme and 534 ultra sudwarfs. We present the entire catalog including observed and derived quantities, and template spectra created from co-added subdwarf spectra. We show color-color and reduced proper motion diagrams of the three metallicity classes, which are shown to separate from the disk dwarf population. The extreme and ultra subdwarfs are seen at larger values of reduced proper motion as expected for more dynamically heated populations. We determine 3D kinematics for all of the stars with proper motions. The color-magnitude diagrams show a clear separation of the three metallicity classes with the ultra and extreme subdwarfs being significantly closer to the main sequence than the ordinary subdwarfs. All subdwarfs lie below (fainter) and to the left (bluer) of the main sequence. Based on the average (U,V,W)(U,V,W) velocities and their dispersions, the extreme and ultra subdwarfs likely belong to the Galactic halo, while the ordinary subdwarfs are likely part of the old Galactic (or thick) disk. An extensive activity analysis of subdwarfs is performed using Hα\alpha emission and 208 active subdwarfs are found. We show that while the activity fraction of subdwarfs rises with spectral class and levels off at the latest spectral classes, consistent with the behavior of M dwarfs, the extreme and ultra subdwarfs are basically flat.Comment: 66 pages, 23 figures, accepted in Ap

    The Very Short Period M Dwarf Binary SDSS J001641-000925

    Get PDF
    We present follow-up observations and analysis of the recently discovered short period low-mass eclipsing binary, SDSS J001641-000925. With an orbital period of 0.19856 days, this system has one of the shortest known periods for an M dwarf binary system. Medium-resolution spectroscopy and multi-band photometry for the system are presented. Markov chain Monte Carlo modeling of the light curves and radial velocities yields estimated masses for the stars of M1 = 0.54 +/- 0.07 Msun and M2 = 0.34 +/- 0.04 Msun, and radii of R1 = 0.68 +/- 0.03 Rsun and R2 = 0.58 +/- 0.03 Rsun respectively. This solution places both components above the critical Roche overfill limit, providing strong evidence that SDSS J001641-000925 is the first verified M-dwarf contact binary system. Within the follow-up spectroscopy we find signatures of non-solid body rotation velocities, which we interpret as evidence for mass transfer or loss within the system. In addition, our photometry samples the system over 9 years, and we find strong evidence for period decay at the rate of dP/dt ~8 s/yr. Both of these signatures raise the intriguing possibility that the system is in over-contact, and actively losing angular momentum, likely through mass loss. This places SDSS J001641-000925 as not just the first M-dwarf over-contact binary, but one of the few systems of any spectral type known to be actively undergoing coalescence. Further study SDSS J001641-000925 is on-going to verify the nature of the system, which may prove to be a unique astrophysical laboratory.Comment: 11 figures, ApJ Accepte

    Hunting The Most Distant Stars in the Milky Way: Methods and Initial Results

    Get PDF
    We present a new catalog of 404 M giant candidates found in the UKIRT Infrared Deep Sky Survey (UKIDSS). The 2,400 deg2^2 available in the UKIDSS Large Area Survey Data Release 8 resolve M giants through a volume four times larger than that of the entire Two Micron All Sky Survey. Combining near-infrared photometry with optical photometry and proper motions from the Sloan Digital Sky Survey yields an M giant candidate catalog with less M dwarf and quasar contamination than previous searches for similarly distant M giants. Extensive follow-up spectroscopy of this sample will yield the first map of our Galaxy's outermost reaches over a large area of sky. Our initial spectroscopic follow-up of ∌\sim 30 bright candidates yielded the positive identification of five M giants at distances ∌20−90\sim 20-90 kpc. Each of these confirmed M giants have positions and velocities consistent with the Sagittarius stream. The fainter M giant candidates in our sample have estimated photometric distances ∌200\sim 200 kpc (assuming [Fe/H][Fe/H] = 0.0), but require further spectroscopic verification. The photometric distance estimates extend beyond the Milky Way's virial radius, and increase by ∌50%\sim 50\% for each 0.5 dex decrease in assumed [Fe/H][Fe/H]. Given the number of M giant candidates, initial selection efficiency, and volume surveyed, we loosely estimate that at least one additional Sagittarius-like accretion event could have contributed to the hierarchical build-up of the Milky Way's outer halo.Comment: 16 pages, 11 figures, emulateapj format. Accepted by A

    M Dwarfs in SDSS Stripe 82: Photometric Light Curves and Flare Rate Analysis

    Full text link
    We present a flare rate analysis of 50,130 M dwarf light curves in SDSS Stripe 82. We identified 271 flares using a customized variability index to search ~2.5 million photometric observations for flux increases in the u- and g-bands. Every image of a flaring observation was examined by eye and with a PSF-matching and image subtraction tool to guard against false positives. Flaring is found to be strongly correlated with the appearance of H-alpha in emission in the quiet spectrum. Of the 99 flare stars that have spectra, we classify 8 as relatively inactive. The flaring fraction is found to increase strongly in stars with redder colors during quiescence, which can be attributed to the increasing flare visibility and increasing active fraction for redder stars. The flaring fraction is strongly correlated with |Z| distance such that most stars that flare are within 300 pc of the Galactic plane. We derive flare u-band luminosities and find that the most luminous flares occur on the earlier-type M dwarfs. Our best estimate of the lower limit on the flaring rate (averaged over Stripe 82) for flares with \Delta u \ge 0.7 magnitudes on stars with u < 22 is 1.3 flares hour^-1 square degree^-1 but can vary significantly with the line-of-sight.Comment: 44 pages, 13 figure

    The M Dwarf Problem in the Galaxy

    Get PDF
    We present evidence that there is an M dwarf problem similar to the previously identified G dwarf and K dwarf problems: the number of low-metallicity M dwarfs is not sufficient to match simple closed-box models of local Galactic chemical evolution. We estimated the metallicity of 4141 M dwarf stars with spectra from the Sloan Digital Sky Survey (SDSS) using a molecular band strength versus metallicity calibration developed using high resolution spectra of nearby M dwarfs. Using a sample of M dwarfs with measured magnitudes, parallaxes, and metallicities, we derived a relation that describes the absolute magnitude variation as a function of metallicity. When we examined the metallicity distribution of SDSS stars, after correcting for the different volumes sampled by the magnitude-limited survey, we found that there is an M dwarf problem, with the number of M dwarfs at [Fe/H] ~ -0.5 less than 1% the number at [Fe/H] = 0, where a simple model of Galactic chemical evolution predicts a more gradual drop in star numbers with decreasing metallicity.Comment: To be published in Monthly Notices of the RAS by the Royal Astronomical Society and Blackwell Publishing. 7 pages, 3 figure

    The SLoWPoKES Catalog of Low-mass Ultra-wide Binaries: A Cool Stars Resource for Testing Fundamental Properties and for Constraining Binary Formation Theory

    Full text link
    We present results from the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES) catalog of ultra-wide (10^3-10^5.5 AU), low-mass (K5-M7) common proper motion binaries. We constructed a Galactic model, based on empirical stellar number density and 3D velocity distributions, to select bona fide pairs with probability of chance alignment <5%, making SLoWPoKES an efficient sample for followup observations. Our initial catalog contains 1342 disk dwarf, subdwarf, and white dwarf-red dwarf systems and is the largest collection of low-mass, wide binaries ever assembled. The diversity---in mass, metallicity, age, and evolutionary states---of SLoWPoKES pairs makes it a valuable resource of coeval laboratories to examine and constrain the physical properties of low-mass stars. SLoWPoKES pairs show signatures of two (or more) formation modes in the distribution of the physical separation and higher-order multiplicity. Neither dynamical dissipation of primordial triples/quadruples or dynamical capture of ejected stars can explain the observed populations by itself. We use followup spectroscopic observations to recalibrate the metallicity-sensitive {\zeta}_(TiO/CaH) index by assuming that both members of the binary system have the same composition. Our new formulation is a significantly better tracer of absolute metallicity, particularly for the early-type M dwarfs. The SLoWPoKES catalog is publicly available on a custom data visualization portal.Comment: To appear in Cool Star XVII proceeding
    • 

    corecore