127 research outputs found

    The political economy of competitiveness and social mobility

    Get PDF
    Social mobility has become a mainstream political and media issue in recent years in the United Kingdom. This article suggests that part of the reason for this is that it can serve as a mechanism to discuss policy concerns that appear to be about social justice without questioning important aspects of neo-liberal political economy. The article charts the policy rhetoric on social mobility under both New Labour and the current Coalition Government. It is argued first that under New Labour the apparent commitment to social mobility was in fact subsumed beneath the pursuit of neo-liberal competitiveness, albeit imperfectly realised in policy. Second, the article suggests that under the Coalition Government the commitment to raising levels of social mobility has been retained and the recently published Strategy for Social Mobility promises that social mobility is what the Coalition means when it argues that the austerity programme is balanced with ‘fairness’. Third, however, the Strategy makes clear that the Coalition define social mobility in narrower terms than the previous government. It is argued here that in narrowing the definition the connection with the idea of competitiveness, while still clearly desirable for the Coalition, is weakened. Fourth, a brief analysis of the Coalition's main policy announcements provides little evidence to suggest that even the narrow definition set out in the Strategy is being seriously pursued. Fifth, the international comparative evidence suggests that any strategy aimed at genuinely raising the level of social mobility would need to give much more serious consideration to narrowing levels of inequality. Finally, it is concluded that when considered in the light of the arguments above, the Strategy for Social Mobility – and therefore ‘Fairness’ itself – is merely a discursive legitimation of the wider political economy programme of austerity

    Cardiopulmonary Exercise Testing Provides Additional Prognostic Information in Cystic Fibrosis

    Get PDF
    RATIONALE: The prognostic value of cardiopulmonary exercise testing (CPET) for survival in cystic fibrosis (CF) in the context of current clinical management, when controlling for other known prognostic factors, is unclear. OBJECTIVES: To determine the prognostic value of CPET-derived measures beyond peak oxygen uptake (V.o2peak) following rigorous adjustment for other predictors. METHODS: Data from 10 CF centers in Australia, Europe, and North America were collected retrospectively. A total of 510 patients completed a cycle CPET between January 2000 and December 2007, of which 433 fulfilled the criteria for a maximal effort. Time to death/lung transplantation was analyzed using Cox proportional hazards regression. In addition, phenotyping using hierarchical Ward clustering was performed to characterize high-risk subgroups. MEASUREMENTS AND MAIN RESULTS: Cox regression showed, even after adjustment for sex, FEV1% predicted, body mass index (z-score), age at CPET, Pseudomonas aeruginosa status, and CF-related diabetes as covariates in the model, that V.o2peak in % predicted (hazard ratio [HR], 0.964; 95% confidence interval [CI], 0.944–0.986), peak work rate (% predicted; HR, 0.969; 95% CI, 0.951–0.988), ventilatory equivalent for oxygen (HR, 1.085; 95% CI, 1.041–1.132), and carbon dioxide (HR, 1.060; 95% CI, 1.007–1.115) (all P < 0.05) were significant predictors of death or lung transplantation at 10-year follow-up. Phenotyping revealed that CPET-derived measures were important for clustering. We identified a high-risk cluster characterized by poor lung function, nutritional status, and exercise capacity. CONCLUSIONS: CPET provides additional prognostic information to established predictors of death/lung transplantation in CF. High-risk patients may especially benefit from regular monitoring of exercise capacity and exercise counseling

    Principles and Fundamentals of Optical Imaging

    Get PDF
    In this chapter I will give a brief general introduction to optical imaging and then discuss in more detail some of the methods specifically used for imaging cortical dynamics today. Absorption and fluorescence microscopy can be used to form direct, diffraction-limited images but standard methods are often only applicable to superficial layers of cortical tissue. Two-photon microscopy takes an intermediate role since the illumination pathway is diffraction-limited but the detection pathway is not. Losses in the illumination path can be compensated using higher laser power. Since the detection pathway does not require image formation, the method can substantially increase the imaging depth. Understanding the role of scattering is important in this case since non-descanned detection can substantially enhance the imaging performance. Finally, I will discuss some of the most widely used imaging methods that all rely on diffuse scattering such as diffuse optical tomography, laser speckle imaging, and intrinsic optical imaging. These purely scattering-based methods offer a much higher imaging depth, although at a substantially reduced spatial resolution

    A portable near infrared spectroscopy system for bedside monitoring of newborn brain

    Get PDF
    BACKGROUND: Newborns with critical health conditions are monitored in neonatal intensive care units (NICU). In NICU, one of the most important problems that they face is the risk of brain injury. There is a need for continuous monitoring of newborn's brain function to prevent any potential brain injury. This type of monitoring should not interfere with intensive care of the newborn. Therefore, it should be non-invasive and portable. METHODS: In this paper, a low-cost, battery operated, dual wavelength, continuous wave near infrared spectroscopy system for continuous bedside hemodynamic monitoring of neonatal brain is presented. The system has been designed to optimize SNR by optimizing the wavelength-multiplexing parameters with special emphasis on safety issues concerning burn injuries. SNR improvement by utilizing the entire dynamic range has been satisfied with modifications in analog circuitry. RESULTS AND CONCLUSION: As a result, a shot-limited SNR of 67 dB has been achieved for 10 Hz temporal resolution. The system can operate more than 30 hours without recharging when an off-the-shelf 1850 mAh-7.2 V battery is used. Laboratory tests with optical phantoms and preliminary data recorded in NICU demonstrate the potential of the system as a reliable clinical tool to be employed in the bedside regional monitoring of newborn brain metabolism under intensive care

    The retreat from locative overgeneralisation errors : a novel verb grammaticality judgment study

    Get PDF
    Whilst some locative verbs alternate between the ground- and figure-locative constructions (e.g. Lisa sprayed the flowers with water/Lisa sprayed water onto the flowers), others are restricted to one construction or the other (e.g. *Lisa filled water into the cup/*Lisa poured the cup with water). The present study investigated two proposals for how learners (aged 5–6, 9–10 and adults) acquire this restriction, using a novel-verb-learning grammaticality-judgment paradigm. In support of the semantic verb class hypothesis, participants in all age groups used the semantic properties of novel verbs to determine the locative constructions (ground/figure/both) in which they could and could not appear. In support of the frequency hypothesis, participants’ tolerance of overgeneralisation errors decreased with each increasing level of verb frequency (novel/low/high). These results underline the need to develop an integrated account of the roles of semantics and frequency in the retreat from argument structure overgeneralisation

    Association between Catechol-O-Methyltrasferase Val108/158Met Genotype and Prefrontal Hemodynamic Response in Schizophrenia

    Get PDF
    BACKGROUND:"Imaging genetics" studies have shown that brain function by neuroimaging is a sensitive intermediate phenotype that bridges the gap between genes and psychiatric conditions. Although the evidence of association between functional val108/158met polymorphism of the catechol-O-methyltransferase gene (COMT) and increasing risk for developing schizophrenia from genetic association studies remains to be elucidated, one of the most topical findings from imaging genetics studies is the association between COMT genotype and prefrontal function in schizophrenia. The next important step in the translational approach is to establish a useful neuroimaging tool in clinical settings that is sensitive to COMT variation, so that the clinician could use the index to predict clinical response such as improvement in cognitive dysfunction by medication. Here, we investigated spatiotemporal characteristics of the association between prefrontal hemodynamic activation and the COMT genotype using a noninvasive neuroimaging technique, near-infrared spectroscopy (NIRS). METHODOLOGY/PRINCIPAL FINDINGS:Study participants included 45 patients with schizophrenia and 60 healthy controls matched for age and gender. Signals that are assumed to reflect regional cerebral blood volume were monitored over prefrontal regions from 52-channel NIRS and compared between two COMT genotype subgroups (Met carriers and Val/Val individuals) matched for age, gender, premorbid IQ, and task performance. The [oxy-Hb] increase in the Met carriers during the verbal fluency task was significantly greater than that in the Val/Val individuals in the frontopolar prefrontal cortex of patients with schizophrenia, although neither medication nor clinical symptoms differed significantly between the two subgroups. These differences were not found to be significant in healthy controls. CONCLUSIONS/SIGNIFICANCE:These data suggest that the prefrontal NIRS signals can noninvasively detect the impact of COMT variation in patients with schizophrenia. NIRS may be a promising candidate translational approach in psychiatric neuroimaging

    IlsA, A Unique Surface Protein of Bacillus cereus Required for Iron Acquisition from Heme, Hemoglobin and Ferritin

    Get PDF
    The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts

    Evaluation and Characterization of Bacterial Metabolic Dynamics with a Novel Profiling Technique, Real-Time Metabolotyping

    Get PDF
    BACKGROUND: Environmental processes in ecosystems are dynamically altered by several metabolic responses in microorganisms, including intracellular sensing and pumping, battle for survival, and supply of or competition for nutrients. Notably, intestinal bacteria maintain homeostatic balance in mammals via multiple dynamic biochemical reactions to produce several metabolites from undigested food, and those metabolites exert various effects on mammalian cells in a time-dependent manner. We have established a method for the analysis of bacterial metabolic dynamics in real time and used it in combination with statistical NMR procedures. METHODOLOGY/PRINCIPAL FINDINGS: We developed a novel method called real-time metabolotyping (RT-MT), which performs sequential (1)H-NMR profiling and two-dimensional (2D) (1)H, (13)C-HSQC (heteronuclear single quantum coherence) profiling during bacterial growth in an NMR tube. The profiles were evaluated with such statistical methods as Z-score analysis, principal components analysis, and time series of statistical TOtal Correlation SpectroScopY (TOCSY). In addition, using 2D (1)H, (13)C-HSQC with the stable isotope labeling technique, we observed the metabolic kinetics of specific biochemical reactions based on time-dependent 2D kinetic profiles. Using these methods, we clarified the pathway for linolenic acid hydrogenation by a gastrointestinal bacterium, Butyrivibrio fibrisolvens. We identified trans11, cis13 conjugated linoleic acid as the intermediate of linolenic acid hydrogenation by B. fibrisolvens, based on the results of (13)C-labeling RT-MT experiments. In addition, we showed that the biohydrogenation of polyunsaturated fatty acids serves as a defense mechanism against their toxic effects. CONCLUSIONS: RT-MT is useful for the characterization of beneficial bacterium that shows potential for use as probiotic by producing bioactive compounds
    corecore