44 research outputs found

    Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels

    Get PDF
    The concentration of free cytosolic Ca(2+) and the voltage across the plasma membrane are major determinants of cell function. Ca(2+)-permeable non-selective cationic channels are known to regulate these parameters but understanding of these channels remains inadequate. Here we focus on Transient Receptor Potential Canonical 4 and 5 proteins (TRPC4 and TRPC5) which assemble as homomers or heteromerize with TRPC1 to form Ca(2+)-permeable non-selective cationic channels in many mammalian cell types. Multiple roles have been suggested including in epilepsy, innate fear, pain and cardiac remodeling but limitations in tools to probe these channels have restricted progress. A key question is whether we can overcome these limitations and develop tools which are high-quality, reliable, easy to use and readily accessible for all investigators. Here, through chemical synthesis and studies of native and over-expressed channels by Ca(2+) and patch-clamp assays, we describe compound 31 (C31), a remarkable small-molecule inhibitor of TRPC1/4/5 channels. Its potency ranged from 9 to 1300 pM, depending on the TRPC1/4/5 subtype and activation mechanism. Other channel types investigated were unaffected, including TRPC3, TRPC6, TRPV1, TRPV4, TRPA1, TRPM2, TRPM8 and store-operated Ca(2+) entry mediated by Orai1. These findings suggest identification of an important experimental tool compound which has much higher potency for inhibiting TRPC1/4/5 channels than previously reported agents, impressive specificity, and graded subtype selectivity within the TRPC1/4/5 channel family. The compound should greatly facilitate future studies of these ion channels. We suggest naming this TRPC1/4/5-inhibitory compound Pico145

    The Morphology of the Rat Vibrissal Array: A Model for Quantifying Spatiotemporal Patterns of Whisker-Object Contact

    Get PDF
    In all sensory modalities, the data acquired by the nervous system is shaped by the biomechanics, material properties, and the morphology of the peripheral sensory organs. The rat vibrissal (whisker) system is one of the premier models in neuroscience to study the relationship between physical embodiment of the sensor array and the neural circuits underlying perception. To date, however, the three-dimensional morphology of the vibrissal array has not been characterized. Quantifying array morphology is important because it directly constrains the mechanosensory inputs that will be generated during behavior. These inputs in turn shape all subsequent neural processing in the vibrissal-trigeminal system, from the trigeminal ganglion to primary somatosensory (“barrel”) cortex. Here we develop a set of equations for the morphology of the vibrissal array that accurately describes the location of every point on every whisker to within ±5% of the whisker length. Given only a whisker's identity (row and column location within the array), the equations establish the whisker's two-dimensional (2D) shape as well as three-dimensional (3D) position and orientation. The equations were developed via parameterization of 2D and 3D scans of six rat vibrissal arrays, and the parameters were specifically chosen to be consistent with those commonly measured in behavioral studies. The final morphological model was used to simulate the contact patterns that would be generated as a rat uses its whiskers to tactually explore objects with varying curvatures. The simulations demonstrate that altering the morphology of the array changes the relationship between the sensory signals acquired and the curvature of the object. The morphology of the vibrissal array thus directly constrains the nature of the neural computations that can be associated with extraction of a particular object feature. These results illustrate the key role that the physical embodiment of the sensor array plays in the sensing process

    Estimating the delay between host infection and disease (incubation period) and assessing its significance to the epidemiology of plant diseases.

    Get PDF
    Knowledge of the incubation period of infectious diseases (time between host infection and expression of disease symptoms) is crucial to our epidemiological understanding and the design of appropriate prevention and control policies. Plant diseases cause substantial damage to agricultural and arboricultural systems, but there is still very little information about how the incubation period varies within host populations. In this paper, we focus on the incubation period of soilborne plant pathogens, which are difficult to detect as they spread and infect the hosts underground and above-ground symptoms occur considerably later. We conducted experiments on Rhizoctonia solani in sugar beet, as an example patho-system, and used modelling approaches to estimate the incubation period distribution and demonstrate the impact of differing estimations on our epidemiological understanding of plant diseases. We present measurements of the incubation period obtained in field conditions, fit alternative probability models to the data, and show that the incubation period distribution changes with host age. By simulating spatially-explicit epidemiological models with different incubation-period distributions, we study the conditions for a significant time lag between epidemics of cryptic infection and the associated epidemics of symptomatic disease. We examine the sensitivity of this lag to differing distributional assumptions about the incubation period (i.e. exponential versus Gamma). We demonstrate that accurate information about the incubation period distribution of a pathosystem can be critical in assessing the true scale of pathogen invasion behind early disease symptoms in the field; likewise, it can be central to model-based prediction of epidemic risk and evaluation of disease management strategies. Our results highlight that reliance on observation of disease symptoms can cause significant delay in detection of soil-borne pathogen epidemics and mislead practitioners and epidemiologists about the timing, extent, and viability of disease control measures for limiting economic loss.ML thanks the Institut Technique français de la Betterave industrielle (ITB) for funding this project. CAG and JANF were funded by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Transcriptomic Analysis of Toxoplasma Development Reveals Many Novel Functions and Structures Specific to Sporozoites and Oocysts

    Get PDF
    Sexual reproduction of Toxoplasma gondii occurs exclusively within enterocytes of the definitive felid host. The resulting immature oocysts are excreted into the environment during defecation, where in the days following, they undergo a complex developmental process. Within each oocyst, this culminates in the generation of two sporocysts, each containing 4 sporozoites. A single felid host is capable of shedding millions of oocysts, which can survive for years in the environment, are resistant to most methods of microbial inactivation during water-treatment and are capable of producing infection in warm-blooded hosts at doses as low as 1–10 ingested oocysts. Despite its extremely interesting developmental biology and crucial role in initiating an infection, almost nothing is known about the oocyst stage beyond morphological descriptions. Here, we present a complete transcriptomic analysis of the oocyst from beginning to end of its development. In addition, and to identify genes whose expression is unique to this developmental form, we compared the transcriptomes of developing oocysts with those of in vitro-derived tachyzoites and in vivo-derived bradyzoites. Our results reveal many genes whose expression is specifically up- or down-regulated in different developmental stages, including many genes that are likely critical to oocyst development, wall formation, resistance to environmental destruction and sporozoite infectivity. Of special note is the up-regulation of genes that appear “off” in tachyzoites and bradyzoites but that encode homologues of proteins known to serve key functions in those asexual stages, including a novel pairing of sporozoite-specific paralogues of AMA1 and RON2, two proteins that have recently been shown to form a crucial bridge during tachyzoite invasion of host cells. This work provides the first in-depth insight into the development and functioning of one of the most important but least studied stages in the Toxoplasma life cycle

    Alloys by precision electrodeposition

    No full text

    Fine structure and possible growth mechanisms of some electrodeposited CuCo granular films

    No full text
    Granular thin-films of the alloy Cu100-xCox within the composition range 6<x<35 have been grown by electrodeposition. The films have been investigated both magnetically and structurally and a comparison made between both types of measurements. Low field susceptibility measurements have been made which, in principle, allow us to determine the distribution of blocking temperatures and thus make an estimate of particle sizes. Before structural examination, the films were thinned either electrochemically or by ion-etching; both standard electron diffraction and TEM techniques have been employed. We believe that we are able to see Co-rich regions in the vicinity of sub-grain boundaries and that it is these regions that account for the magnetic behaviour of the samples. Whereas electron diffraction patterns from thin sections correspond to the FCC phase only, in thicker sections, additional reflections corresponding to interplanar spacings that cannot be indexed in terms of an FCC phase are observed. The possible origins of these extra reflections are discussed in terms of either double-diffraction at microtwins or, alternatively, in terms of extended, Co-rich HCP phases formed at matrix/twin interfaces. A possible mechanism for the growth of the HCP phase, which is a consequence of the electrodeposition technique, is discussed
    corecore