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Abstract

Knowledge of the incubation period of infectious diseases (time between host infection and expression of disease
symptoms) is crucial to our epidemiological understanding and the design of appropriate prevention and control policies.
Plant diseases cause substantial damage to agricultural and arboricultural systems, but there is still very little information
about how the incubation period varies within host populations. In this paper, we focus on the incubation period of
soilborne plant pathogens, which are difficult to detect as they spread and infect the hosts underground and above-ground
symptoms occur considerably later. We conducted experiments on Rhizoctonia solani in sugar beet, as an example patho-
system, and used modelling approaches to estimate the incubation period distribution and demonstrate the impact of
differing estimations on our epidemiological understanding of plant diseases. We present measurements of the incubation
period obtained in field conditions, fit alternative probability models to the data, and show that the incubation period
distribution changes with host age. By simulating spatially-explicit epidemiological models with different incubation-period
distributions, we study the conditions for a significant time lag between epidemics of cryptic infection and the associated
epidemics of symptomatic disease. We examine the sensitivity of this lag to differing distributional assumptions about the
incubation period (i.e. exponential versus Gamma). We demonstrate that accurate information about the incubation period
distribution of a pathosystem can be critical in assessing the true scale of pathogen invasion behind early disease symptoms
in the field; likewise, it can be central to model-based prediction of epidemic risk and evaluation of disease management
strategies. Our results highlight that reliance on observation of disease symptoms can cause significant delay in detection of
soil-borne pathogen epidemics and mislead practitioners and epidemiologists about the timing, extent, and viability of
disease control measures for limiting economic loss.
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Introduction

Invasions of semi-natural systems by plant pathogens can cause

substantial economic and ecological damage [1,2,3,4,5]. Invasions

of soilborne plant pathogens, however, have received less attention

than their airborne counterparts [6]. Unlike airborne pathogens,

which can disperse over very large distances, soilborne plant

pathogens generally disperse over short distances and invade host

plant populations on smaller spatial scales [7,8,9,10]. However,

inoculum stages of these pathogens can be carried over

considerable distances, through water, animal movement, and

human agricultural and trade practices [11], and survive in the soil

from season to season [12]. Therefore, large outbreaks (epiphy-

totics) of soilborne plant diseases can occur and cause severe crop

losses [5,13,14,15]. However, as plant soilborne pathogens infect

and spread cryptically underground much before the emergence of

visible disease symptoms [7], it is difficult to assess disease risk and

prevent, detect, and control the development of epidemics without

resorting to pre-emptive treatments harmful to soil ecosystems and

the general environment [12]. In order to design and target

appropriate disease management strategies, it is crucial, therefore,

to know the incubation period (from host infection to expression of

disease symptoms) associated with a given pathogen and host.

Perhaps not surprisingly, there is very limited information about

the expected magnitude and between-individual variability of the

incubation periods of soilborne plant pathogens [16]. In this

paper, we present the results of experiments for measuring the

incubation period of the ubiquitous soilborne pathogenic fungus

Rhizoctonia solani [17] in sugar beet. We identify different

probability distribution models that fit the observations, and assess

the epidemiological implications of making different assumptions
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about the incubation period, by studying pathogen and disease

spread in a spatially-explicit epidemiological model.

The epidemiology of transmissible diseases is characterised by

the infectiousness status of the individual hosts exposed to a given

pathogen; but this status is usually unobserved (hidden) and not

easily determined microbiologically [18,19]. Therefore, health and

disease management are generally informed by the pathology status

of the hosts, whether human, animal, or botanical [20]. The

relative development of the two statuses in infected hosts can be

disparate (Fig. 1A) depending on the infectious agent and host

species, with implications to the feasibility of controlling disease

outbreaks [21]. Characterising the incubation period of a

pathogen-host system relies on the ability to determine and relate

the relative development of host infectiousness and pathology,

which is limited by challenges in collecting appropriate data [22].

Here, we are interested in modelling plant disease outbreaks, and,

in particular, in characterising the incubation period of soilborne

pathogens in host plants by relating their infectiousness and

pathology (Fig. 1B). Epidemiological models of disease spread in

human, animal [23,24] or plant [16,25] populations typically rely

on a compartmentalisation of the infectiousness status as Susceptible,

Exposed (or Latent), Infectious, and Removed (or Recovered) classes, or

subsets or extensions thereof depending on the specific pathogen

life-history and host species. In order to merge infectiousness and

pathology statuses, a Diseased state is usually added. For plant

pathogens, disease expression usually occurs in already infectious

hosts and does not stop host from being infectious (Fig. 2A) [26]; in

this context, state I represents infectious incubation. The simplest

compartmental models implicitly assume the between-host distri-

bution of the incubation period (in fact, the residence time in any

of the compartment states) is a negative exponential. As this

convenient assumption can be biologically implausible, adapta-

tions of the compartmental modelling framework have been

proposed that have more flexible residence-time distributions with

non-zero mode (Fig. 1C), such as Gamma or Erlang probability

density functions [27,28,29]. For soilborne plant pathogens, for

which a SID epidemiological model is often appropriate (Fig. 2A)

[8,30] we implement the adaptation by dividing the non-

symptomatic infectious stage into multiple states (Fig. 2B). Several

modelling studies have examined the epidemiological consequenc-

es of differing assumptions about latent and infectious period

distributions [31,32,33], but few works have studied the incubation

period and associated disease management implications, or used

empirical data.

After presenting our observations of the incubation period of R.

solani in sugar beet, we fit suitable probability models to their

distribution, and demonstrate its dependency on host age.

Furthermore, we study the conditions for a significant lag between

observable disease epidemics and cryptic pathogen epidemics

across a host population, and the sensitivity of this lag on differing

modelling assumptions about the incubation period. We address

these questions by developing and exploring an epidemiological

model of pathogen spatial spread that incorporates the data-fitted

distributions.

Figure 1. Epidemiological, within-host, life-cycle periods of a pathogen. A) An infected host may exhibit differing combinations of
infectiousness state (susceptible-latent-infectious-recovered) and pathology state (incubation-diseased), depending on characteristics and conditions of
the host and pathogen. B) In the case of a soilborne plant disease, the appearance of visible disease symptoms can be delayed when infection occurs
late in the crop season and/or the host is mature. C) Illustration of an age-varying distribution of the incubation period in the R. solani – sugar beet
pathosystem.
doi:10.1371/journal.pone.0086568.g001
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Materials and Methods

Pathosystem
In this study we considered the saprotrophic fungus Rhizoctonia

solani anastomosis group (AG) 2-2 IIIB (isolate G6) which

parasitizes various plant crops, such as sugar beet, maize, and

rice. On sugar beet, this pathogen causes the economically

important root rot (or crown rot) disease [34]. Rhizoctonia solani

spreads locally from infected plants to neighbouring non-infected

plants, causing the development of patches of disease during the

crop-growing season. The isolate AG2-2 IIIB tends to spread late

on mature plants [17]. However, as the susceptibility of sugar beet

to R. solani does not change significantly with age, the fungus can

colonize sugar beet at any stage of a crop season provided suitable

environmental conditions occur. The presence of root rot disease

is often shown by above-ground symptoms of crown rot, wilting,

and, when epidemics start early in the growing season, pre-

emergence and post-emergence damping off.

Experimental Measurements of the Incubation Period
We inoculated the roots of sugar beet plants of different ages

with R. solani, and measured the time between inoculation and

above-ground detection of symptoms in field conditions. Exper-

iments were carried out in the INRA experimental station at Le

Rheu, France (coordinates 48u069 N, 1u489 W) in 2010 and 2011,

with the permission of the Inra experimental unit UE787. The

sugar beet crop (cv Skipper) was sown manually on April 9th 2010

and on April 8th 2011 and was irrigated to prevent soil

dehydration and plant hydric stress. As strains of R. solani

pathogenic to sugar beet had not been introduced and sugar beet

had not been grown previously in these plots, we assumed that the

soil was free of inoculum before the experiments. We sowed sugar

beet at the vertices of a regular lattice with a 80 cm spacing; a

distance large enough to prevent undesirable infections between

neighbouring plants in these conditions [35].

We used infested barley seeds as inoculum of R. solani. First,

barley seeds were soaked with water before autoclaving (261 h at

115uC, with a 24 h interval between autoclaving); then the

autoclaved barley was inoculated with mycelial plugs removed

from the margins of seven-day old colonies grown on malt agar at

20uC. Finally, the inoculated seeds were incubated for three weeks

at 20uC.

In order to assess the evolution of the incubation period at

different ages of plant root infection, we inoculated sugar beet at

ages 14, 32, 46, 60, 74, 88, 102, 116 and 130 days after sowing. In

the experimental area, individuals were randomized in 3 blocks

(i.e. south, middle and north) to assess the potential effect of the

position in plots on the incubation period. Inoculations consisted

in placing inoculum units (three infested barley seeds) in contact

with plants 3 cm below-ground. Above-ground symptoms of root

rot disease were assessed visually at least every two days. We have

adopted as a measure of incubation period the time interval

between inoculation and detection of the first symptoms. In our

statistical analyses, we ignore this censoring in the data as the

censoring interval is small. For each host age, we infected at least

40 plants. Specifically, we obtained measures of the incubation

period of 78, 52, 53, 49, 46, 49, 45, 46, and 46 individuals at ages

14, 32, 46, 60, 74, 88, 102, 116 and 130 days, respectively

(Table 1).

Two time scales are often used to measure processes in plant

systems: calendar time in days, which is useful for practitioners,

and time in degree-days, which incorporates temperature-depen-

dence in plant and pathogen responses [36]. In this work, we

measure time in degree-days because temperature was a key

abiotic variable that was not controlled during our experiments.

Figure 2. Epidemiological models. Compartmental structure
(Susceptible – Infectious - Diseased or symptomatic) and dynamic
transitions of each individual in the host population. A) The SID model
has an exponentially-distributed incubation period. B) The S-I(n)-D
model, where the infectious compartment is subdivided into n
compartments prior to appearance of disease symptoms, has an
Erlang-distributed incubation period (sum of n exponentially- distrib-
uted random variables). In this paper, the infectious and diseased states
of one host are equally infectious and contribute to pathogen spread to
other hosts, and, participate to their transition from state S to state I
(grey lines). Primary infection is determined by amount of resident
inoculum (X) near a susceptible host, and also contributed to its
infection (broken grey lines).
doi:10.1371/journal.pone.0086568.g002

Table 1. Experimental incubation period data by host age: Number of plants inoculated, mean, and standard deviation.

Age (days) Age (6C.days) Number of individuals Mean (days) SD (days) Mean (6C.days) SD (6C.days)

18 182.35 78 6.5 0.9 79.19 11.37

32 359.25 52 10.0 2.3 128.72 31.11

46 542 53 14.4 3.1 198.69 42.91

60 607.05 49 18.5 1.9 279.52 33.47

74 811.15 46 21.2 4.7 371.94 82.56

88 1053.95 49 25.4 5.2 445.88 87.98

102 1303.35 45 26.8 5.8 442.43 90.1

116 1545 46 31.8 10.2 486.92 149.35

130 1764.85 46 37.4 10.7 537.60 133.30
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Age-specific Incubation Period Analysis
While the distribution of the incubation period of the inoculated

plants exhibits more than one mode for some host ages (Fig. 3B), in

this study we fitted uni-modal distribution models to the data.

First, the limitations in the data may be responsible for some of the

apparent multi-modality while an assumption of unimodality

seems biologically plausible. Second, a uni-modal analysis is

simpler to implement and offers an easily interpretable first

description of the incubation period. Thirdly, in all cases (Fig. 3B),

there is a dominant mode that we expect to be the main

determinant of the mode in the fitted distribution model. We fitted

alternative probability density function (pdf) models, Gamma,

Weibull, Lognormal, and exponential, to the incubation period

data allowing for mutually-independent sets of pdf parameters

among host-age groups (see Appendix S2 for definition of pdfs).

The parameters were evaluated using maximum-likelihood

estimation and neglecting the censoring imposed by the two-day

observation frequency, i.e., assuming the data represent the actual

time period between infection and first emergence of symptoms for

each plant. We used the Akaike information criterion (AIC) metric

to compare the goodness of fit of the alternative pdf models over

all age groups and for each age group. For each plant age group,

we also compared the survival function associated with each two-

parameter distribution, Gamma, Weibull and Lognormal, against

its non-parametric Kaplan-Meier estimator [37]. We assessed the

effect of the location of individuals in plots (south, middle and

north) on the incubation period, by age, by using Cox proportional

hazards regression. As we found this covariate to be non-

significant, we did not include it in subsequent analyses. All

statistical analyses were performed using the free software R [38].

Age-varying Models of the Incubation Period Distribution
We built age-varying models of the incubation period distribu-

tion following a semi-empirical approach. First, we assume that the

incubation period (T) is a time- or age-varying Gamma-distributed

random variable,

T(t)*Gamma(k,l(t)) ð1aÞ

with constant shape parameter k and an age-dependent rate

parameter l(t). Detailed analyses (see Appendix S3) suggest that

the rate parameter is described by a decreasing exponential

Figure 3. Experimental measurements of the incubation period. Experimental data on the incubation period of R. solani in sugar beet plants
of nine differing ages. Dispersion of the incubation period within each plant age group, shown in: A) boxplots, and B) frequency distributions
(histograms).
doi:10.1371/journal.pone.0086568.g003
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function of age t with non-zero asymptote c:

l(t) ~ ae{btzc ð1bÞ

which allows the mean and variance of the incubation period to

increase with age and asymptote k/c and k/c2, respectively.

Second, we consider an Erlang distribution, i.e. a Gamma pdf with

integer shape parameter [39], which offers a tractable way of

conferring Gamma distributions to residence times in compart-

mental epidemiological models [29,31]. The reason for this

tractability is that an Erlang-distributed random variable with

parameters k and l is the sum of k exponentially-distributed

random variables with rate parameter l. Here, we consider this

particular case of model (1a), i.e., T,Erlang(k, l(t)), and compare

age-varying distribution models for the incubation period where k

is a free integer parameter. Note that k = 1 corresponds to the

exponential distribution.

The probability densities of the parameters k, a, b and c, were

estimated from the experimental data using a Bayesian framework

with a likelihood function based on (1), and non-informative prior

distributions. Posterior densities were obtained via Markov Chain

Monte Carlo (MCMC) parameter sampling run on OpenBUGS

[40], whose outputs were analysed with R software [38] (see

Appendix S3 for more details). An assessment of the adequacy of

Erlang and exponential models was made by examining Box-and-

Whisker plots (Boxplot) of the MCMC posterior distributions of

the incubation period, rate parameter l(t), and mean and variance

associated with each of the pdf models. Finally, for assessing the

relative goodness of fit of the age-varying pdf models we used the

Deviance information criterion (DIC).

Epidemiological SID Model with Differing Incubation
Period Distributions

We demonstrate the importance of the assumed distribution

of the incubation period, by simulating the spread of the

pathogen in a host population and contrasting the dynamics of

the cryptically- and symptomatically-infected parts of the popu-

lation. Specifically, we simulate soilborne disease epidemics in

spatially-explicit, stochastic plant population model with SID

(Susceptible-Infectious-Diseased) compartmental structure, and with

either an Erlang distribution (Fig. 2B) or the more commonly used

exponential distribution (Fig. 2A) for the incubation period. For

soilborne plant diseases, the host latency is often relatively short or

unknown [8], so its inclusion in the model is not essential to our

central question.

The dynamics of a stochastic SID model (Fig. 2A) can be

modelled using a discrete-event, interacting-population Markov

process [41,42] where each individual can be in one among the

states S, I, D. This process is defined in continuous time t by the

probabilities of transition for each individual host in the

population, conditional on its current state. We assume that the

individuals are equally infectious in the I and D states. In a non-

spatial (mean-field) model, in which the individuals interact

independently of their relative location, the transition probabilities,

during an infinitesimal time lag dt, are given by [43]:

Prob(S?I ,dtDS,t) ~ bpzbs NI (t)zND(t)ð Þ
� �

dt

Prob(I?D,dtDI ,t) ~ m dt

(
ð2Þ

where bp is the rate of primary infection, bs is the rate of secondary

infection, m is the rate at which infected hosts become symptomatic

(after which they can be detected), and NI(t) and ND(t) are the

numbers of individuals in the host population that are in states I

and D, respectively, at time t. The transition probabilities (2) hold

for an incubation period T that is exponentially distributed with

mean 1/m and variance 1/m2, i.e., for a model with a single

infectious compartment (k = 1). The extension of (2) to a non-

spatial S(k)ID model (Fig. 2B) with k infectious compartments

(I1,…,Ik), i.e., a Gamma-distributed incubation period with mean

l= km and integer shape parameter k, is:

Prob(S?I ,dtDS,t) ~ bpzbs

Pk
j~1

NIj
(t)zND(t)

 !" #
dt

Prob(Ij?Ijz1,dtDIj ,t) ~ l dt (j~1,:::,k{1)

Prob(Ik?D,dtDIk,t) ~ l dt

8>>>><
>>>>:

ð3Þ

Table 2. Distribution models fitted to the incubation period data by host age, Gamma, Lognormal, Weibull, Erlang, and
exponential: parameters and Akaike information criterion (AIC) score.

Gamma Weibull Lognormal Erlang Exponential

Total AIC 4998.06 4994.65 5017.56 4996.8 6084.6

Age in days

(6C.days) AIC(*) shape rate AIC(*) shape rate AIC(*)
Meanlog
(**)

sdlog
(**) AIC(*) shape rate AIC rate

18 (182.35) 604.40 47.88 0.600 620.73 6.47 0.0119 607.52 4.36 0.15 604.50 48 0.610 840.01 0.013

32 (359.25) 512.60 15.30 0.120 507.04 4.83 0.0071 517.00 4.82 0.27 513.00 15 0.120 611.20 0.008

46 (542.00) 552.50 20.84 0.100 552.70 5.18 0.0046 554.21 5.27 0.22 552.55 21 0.110 669.00 0.005

60 (607.05) 488.00 67.72 0.240 484.18 9.90 0.0034 489.35 5.63 0.12 488.05 68 0.240 652.04 0.004

74 (811.15) 536.11 21.68 0.060 542.85 4.74 0.0025 535.20 5.90 0.21 535.11 22 0.060 638.52 0.003

88 (1053.95) 582.90 24.39 0.050 580.60 5.78 0.0021 584.89 6.10 0.21 583.00 24 0.050 697.81 0.002

102 (1303.35) 548.21 18.00 0.040 527.12 6.83 0.0021 555.82 6.06 0.26 548.24 18 0.040 640.31 0.002

116 (1545.00) 595.53 9.83 0.020 592.74 3.76 0.0018 597.83 6.14 0.33 595.54 10 0.020 663.30 0.002

130 (1764.85) 577.81 19.19 0.030 586.69 4.19 0.0017 575.74 6.26 0.23 576.81 18 0.030 672.41 0.002

(*)Bold indicates lowest or within 5 units from the lowest AIC score.
(**)Mean and standard deviation of the log transformed variable.
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Spatially Explicit SID Model with Differing Incubation
Period Distributions

The spread of plant soilborne pathogens within a host

population is often local, between nearest neighbour plants

[9,35,44]; therefore, non-spatial models can be poor at predicting

epidemics development. In an individual-based spatial model

where pathogen transmission occurs between nearest-neighbour

plants (i.e. within a von Neumann neighbourhood), the transition

probabilities for each host (i) in the population at time t,

conditional on its current state, are given by [43]:

Prob(S?I ,dtDS; i,t) ~ bpzbs nI ,i(t)znD,i(t)ð Þ
� �

dt

Prob(I?D,dtDI ; i,t) ~ m dt

(
ð4Þ

for a model with a single infection compartment (k = 1), and by

Figure 4. Survivorship of the distribution models fitted to the incubation period data by host age. Gamma (blue line) Lognormal
(green), Weibull (purple), and estimated non-parametric Kaplan-Meier (black) survival function. Age of host plants at inoculation: (A) 18 days
(182uC.days), (B) 32 days (359uC.days), (C) 46 days (542uC.days), (D) 60 days (607uC.days), (E) 74 days (811uC.days), (F) 88 days (1053uC.days), (G) 102
days (1303uC.days), (H) 116 days (1545uC.days),and (I) 130 days (1764uC.days).
doi:10.1371/journal.pone.0086568.g004
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Prob(S?I ,dtDS; i,t) ~ bpzbs

Pk
j~1

nIj ,i(t)znD,i(t)

 !" #
dt

Prob(Ij?Ijz1,dtDIj ; i,t) ~ l dt (j~1,:::,k{1)

Prob(Ik?D,dtDIk; i,t) ~ l dt

8>>>><
>>>>:

ð5Þ

for a model with k infection compartments and rate of transition

from state Ii to state Ii+1 given by l= km. In (4)-(5), nI,i(t) and

nD,i(t) are the numbers of nearest neighbours of individual i that

are in the states I and D, respectively, at time t, and nIj,i(t) is the

corresponding number for the sub-state Ij.

We used the spatially-explicit models (4) and (5) to assess the

impact of making different assumptions about the incubation

period distribution on the epidemic dynamics; namely, the

appearance of a lag between the spread of infection and the

emergence of above-ground disease symptoms across the host

population.

Rates of Primary and Secondary Infection
In the case of fungal soilborne pathogens, the rate of primary

infection can decline over time; it has been observed in the

laboratory that there is decline in the number and efficiency of the

inoculum units [9,44]. In addition, in field conditions, the

germination and growth of residuals inocula of R. solani is also

driven by abiotic conditions such as moisture and temperature

[45]. Thus, we consider that epidemics caused by R. solani start at a

theoretical time t0 after sowing when environmental conditions are

suitable for fungal growth. With these assumptions, the rate of

primary infection bp is given by a decreasing exponential function

of time with a delay:

bp(t)~a1 exp ({a2(t{t0)) if t0vt

bp(t)~0 if t0wt

(
ð6Þ

The spread of R. solani in crop populations with secondary

infection rate bs occurs predominantly between nearest neighbour

plants, both in the laboratory [9,44] and in field conditions [35].

The rate of secondary infection of soilborne fungal pathogens, and

thus their ability to invade host populations, depends on several

factors; for example, the distance between neighbouring host

plants (i.e. spacing at sowing or planting in crop systems). In field

conditions, however, there is a myriad of known biotic or abiotic

factors that may affect the secondary transmission of R. solani and

thus impact the emergence of epidemics. For simplicity, for the

purpose of this paper of demonstrating the effect of incubation

period distributions on epidemic development, we do not focus on

a specific environmental factor, and thus consider the rate of

secondary infection to be constant over time in the population

model (i.e. bs(t) =bs .0).

Simulation of the Spatially-explicit Epidemics
In order to compare the dynamics of disease symptoms and

hidden infections, we simulated stochastic epidemics in scenarios

with low (bs = 5e-7) or high (bs = 5e-4) rate of secondary infection,

and with an early (t0 = 0uC.days) or late (t0 = 700uC.days) start of

the epidemic in relation to the time of crop sowing. For primary

infection we used a1 = 0.002 and a2 = 0.008 based on previous

parameter estimation [26]. We simulated the stochastic epidemics

by running our spatially-explicit SID model on a 100 site by 100

site square lattice up to 2500uC.days. For coding the simulation we

used the direct method algorithm [46], which gives exact realisations

of Markov processes. We determined the time to emergence of

disease symptoms after each new individual infection (incubation

period), by sampling from Erlang(k,l(t)) or Exponential(l(t)) pdfs

with age-varying parameters based on the means of the Bayesian

posterior distributions of parameters a, b and c. As our simulation

study is aimed at a demonstration of principle, it is not relevant in

this case to incorporate parameter uncertainty associated with the

estimated posterior distributions. These hierarchical hidden Markov

models were implemented in C++ and the outputs were analysed

with R software.

Results

Empirical Incubation Period Distribution
The experimental results show significant age-specific variation

in the incubation period (time from inoculation to disease

Table 3. Age-varying incubation period distribution models fitted to experimental data on all host-age groups, Gamma, Erlang,
and Exponential (k = 1): shape parameter k, parameters a, b, c in the rate parameter function of host age l(t) given by (1b), and
Deviance information criterion (DIC).

Gamma Erlang Exponential

DIC 5075 5071 6075

k a b c k a b c a b c

Mean 19.52 0.449 0.00403 0.0381 0.450 0.00403 0.0381 0.025 0.00424 0.0020

Mode 19.00 0.450 0.00405 0.0370 19 0.450 0.00405 0.0370 0.025 0.00425 0.0020

SD 1.26 0.034 0.00013 0.0025 1 0.035 0.00013 0.0026 0.005 0.00058 0.0002

q-2.5% 17.18 0.380 0.00379 0.0334 18 0.387 0.00378 0.0338 0.017 0.00317 0.0016

q-25% 18.63 0.427 0.00394 0.0362 19 0.426 0.00394 0.0364 0.021 0.00386 0.0019

Median 19.5 0.448 0.00402 0.0380 20 0.448 0.00403 0.0379 0.024 0.00419 0.0020

q-75% 20.38 0.471 0.00412 0.0397 20 0.473 0.00411 0.0396 0.027 0.00462 0.0021

q-97.5% 21.99 0.520 0.00427 0.0432 22 0.528 0.00427 0.0439 0.037 0.00553 0.0024

Confidence range (*) 4.81 0.140 0.00048 0.0098 4 0.141 0.00049 0.0101 0.020 0.00236 0.0008

(*) Confidence range = q-97.5 - q-2.5%.
doi:10.1371/journal.pone.0086568.t003
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symptom expression) of sugar beet plants inoculated with R. solani

(Fig. 3). There is generally an increase in the mean and variance

(Table 1) and in the dominant mode and dispersion (Fig. 3) of the

incubation period with increasing age of the sugar beet. The mean

and variance increased up to age 1000uC.days, after which they

stabilised.

Models of the Incubation Period Distribution
For each age of the plants at inoculation, the survival functions

associated with the Gamma, Lognormal, and Weibull distributions

fitted to the incubation period data are close to the non-parametric

Kaplan-Meier estimator of incubation survivorship (Fig. 4); hence,

either of these distributions appears to be a suitable candidate

model of the incubation period distribution. Based on the AIC

relative goodness of fit measure, the data are best described by the

Gamma distribution for plant ages 182 and 542uC.days, by the

Erlang distribution for 811uC.days, by the Lognormal distribution

for 1764uC.days, and by the more flexible Weibull distribution for

the other plant ages (Table 2). However, the differences in AIC

score among distributions are less than 5 for most age groups

(Table 2). The overall AIC on model fit to all age groups (sum of

age-specific scores) shows negligible difference among the Gamma

(4998), Weibull (4995), and Erlang (4997) distributions, but

indicates a less good fit of the Lognormal distribution (5018)

(Table 2). Not surprisingly, the single-parameter exponential

distribution is clearly inadequate with overall AIC 6085. These

results suggest that, while the Weibull distribution emerges as the

best candidate distribution model, the Gamma distribution and its

special case of the Erlang distribution, which is convenient to use in

compartmental models, are appropriate and may be implemented

Figure 5. Age-varying Erlang distribution model of the incubation period of R. solani in sugar beet plants. MCMC posteriori Erlang
distribution (A), and uncertainty in its rate parameter function of plant age l(t) = a*exp(2b*t)+c (B), mean (C) and standard deviation (D). The
posterior distributions of the Markov Chain Monte Carlo sample are shown with boxplots, where the end of dashed lines represents minimum
(bottom) and maximum (top) quartiles that exclude outliers (empty circles). The shape parameter k has mode value 19. The model was fitted
simultaneously to data on plants inoculated at ages 182, 359, 542, 607, 811, 1053, 1303, 1545 and 1764uC.days. Observed incubation periods are
represented by blue full points in (A).
doi:10.1371/journal.pone.0086568.g005
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in our population models (Appendix S2). Henceforth, we focus on

these distributions.

Age-varying Models of the Incubation Period Distribution
We fitted alternative single-distribution models, Gamma,

Erlang, and exponential, simultaneously to the incubation period

data from every plant age group by allowing the rate parameter to

vary with plant age t according to (1b). We used Bayesian MCMC

parameter sampling to fit the models. According to the DIC

relative goodness of fit measure (Table 3), the model with best fit is

the Erlang distribution (DIC = 5071), followed closely by the

Gamma distribution (DIC = 5075). The exponential distribution

model fitted the data poorly (DIC = 6075). Based on the mode of

the parameter’s marginal posterior distributions (Table 3), the

fitted Erlang distribution has shape and rate parameters k = 19 and

l(t) = 0.450*exp(20.00403*t)+0.0381, and the fitted exponential

distribution, for which k = 1 by definition, has rate parameter

l(t) = 0.025*exp(20.00424*t)+0.002. The posterior distributions of

parameters a, b, and c are relatively tighter (narrower 95%

confidence range) for the Erlang and Gamma models than for the

exponential model (Table 3). Likewise, the posterior distribution of

the rate parameter l(t) shows relatively lower uncertainty (lower

standard errors) for the Erlang model (Fig. 5B) than for the

exponential model (Fig. 6B), especially for young plants. The mean

and standard deviation increased with plant age following a

sigmoid shape with asymptotes 513 and 118, respectively, for the

Erlang distribution model (Fig. 5C & 5D); and with asymptotes

500 and 500, respectively, for the exponential distribution model

(Fig. 6C & 6D). In line with these results, the a posteriori Erlang

incubation period distribution (Fig. 5A), obtained via re-sampling

from the fitted Erlang distribution model, matches reasonably well

the median and dispersion in the experimental data (Fig. 3). The

corresponding posterior distribution for the exponential distribu-

tion model (Fig. 5A) shows over-dispersion in relation to the data

(Fig. 3).

Figure 6. Age-varying exponential distribution model of the incubation period of R. solani in sugar beet plants. Similar to Figure 5,
except that the shape parameter has fixed value k = 1.
doi:10.1371/journal.pone.0086568.g006
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Figure 7. Epidemic dynamics of cryptic infections and disease symptoms in populations with differing incubation period
distributions (weak secondary infection). Epidemic dynamics of cryptic infections (top, black) and above-ground disease symptoms in
populations with differing incubation period distributions: Erlang (middle, red) and exponential (bottom, orange). Scenarios with low secondary
infection rate (bs = 5e-7), and with early (t0 = 0u.days) or late (t0 = 700u.days) epidemic start in relation to the time of plant sowing, after which resident
primary inoculum declines and the incubation period distribution of the aged hosts changes. Each panel: 1000 stochastic simulations of model (5) on
a host population in 100*100 square lattice, with a1 = 0.002 and a2 = 0.008. The shading density represents the proportion of 1000 simulations
associated with each point on the graph.
doi:10.1371/journal.pone.0086568.g007
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Figure 8. Epidemic dynamics of cryptic infections and disease symptoms in populations with differing incubation period
distributions (strong secondary infection). Epidemic dynamics of cryptic infections (top, black) and above-ground disease symptoms in
populations with differing incubation period distributions: Erlang (middle, red) and exponential (bottom, orange). Similar to Figure 7, but with a high
rate of secondary infection (bs = 5e24).
doi:10.1371/journal.pone.0086568.g008
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Simulation of the Spread of Infection and Disease in the
Host Population

Our simulated scenarios demonstrate there can be considerable

differences among the epidemic dynamics of cryptic (asymptom-

atic) infections and of observable disease (Fig. 7, 8 & 9), depending

on the assumed distribution of the incubation period. Epidemics

with low secondary infection rate (Fig. 7, 9A & 9B) are driven by

declining primary inoculum and exhibit low stochastic variability,

while epidemics with high secondary infection rate (Fig. 8, 9C &

9D) show an additional phase of pathogen spread through the host

population and greater variability among stochastic realisations. In

the first case, cryptic and symptomatic epidemics reach the same

asymptote within the crop season (Fig. 9A & 9B), while in the latter

case, where the pathogen spreads locally between hosts, the

symptomatic epidemic lags after the cryptic epidemic until the end

of the crop season (Fig. 9C & 9D).

Differences in the time of epidemic start (t0) relative to the time

of crop sowing, driven, for example, by environmental conditions

or susceptibility of crop variety, further increase the time lag of the

observable epidemics. In early epidemics (t0 = 0uC.days) (Fig. 7A–

C, 8 A–C, 9A & 9C), there is no significant difference between the

progress of cryptic and symptomatic infections, and, therefore, a

negligible effect of the assumption made about the incubation

period distribution, i.e. Erlang or exponential. This pattern is

explained by the shortness of the incubation period in young hosts

and the resemblance among fitted distribution models prior to

500uC.days (Fig. 5A & 6A). In late epidemics (t0 = 700uC.days)

there is a significant delay of the symptomatic relative to the

cryptic epidemics. This delay is magnified when the incubation

period has the more realistic (better data fit) Erlang distribution

model (Fig. 7D–E, 8 D–E, 9D & 9E). When the epidemics start

late, and, therefore, hosts are older, the mean incubation period is

longer and the fitted incubation period distribution models are

Figure 9. Mean epidemic dynamics of cryptic infections and disease symptoms in populations. Mean epidemic dynamics of cryptic
infections (black) and above-ground disease symptoms in populations with differing incubation period distributions: Erlang (red) and exponential
(orange). A-B-C & D compare the mean of the distribution of stochastic epidemics at each time point in Figures 7 and 8. Late epidemics show a
considerable lag in symptomatic infections relative to cryptic infections that depends on the assumed distribution of the incubation period.
doi:10.1371/journal.pone.0086568.g009
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distinct enough to produce contrasting dynamics between cryptic

infection and observable disease. The Erlang (S-(k)I-D) distribution

model (5), which fits the observation better, yields a later and more

abrupt increase in the number of symptomatic plants than the

simplest exponential (S-I-D) model (4) (Fig. 7E–F, 8E–F, 9A &

9D).

Discussion

Empirical data on the incubation period of pathogens, and in

particular soilborne plant pathogen, is rarely available [26]. We

have presented the results of detailed experimental observations of

the incubation period of the soilborne fungal pathogen R. solani in

sugar beet, and fitted different probability density functions to the

distribution of incubation periods among individual plants. We

found that the mode and dispersion of this distribution increase

with host age, while a decreasing trend with host age has been

observed for some aerial plant diseases [47]. We also found that

the single-parameter exponential distribution, which has mode at

incubation period zero and is subsumed in the standard

epidemiological compartmental-modelling frameworks, fits the

incubation data poorly (Table 2, Table 3, Fig. 6). However, the

Erlang distribution, which is built into more recent compartmen-

tal-modelling frameworks developed in epidemiology in the past

two decades [27,28,29,31], provides a data fit as good as other

two-parameter distributions such as Weibull (Appendix S2,

Table 2, and Table 3). As a further improvement, more elaborate

age-varying distribution models could be fitted to the data,

particularly when detailed study of specific pathosystems is

relevant. For instance, age-varying distribution models with

multiple modes (e.g. mixtures of uni-modal distributions) are

likely to outperform the statistical fit of our simpler age-varying

Erlang model, and, potentially lead to improved prediction of

levels of asymptomatic and symptomatic infection in epidemio-

logical models. However, we believe our parsimonious distribution

model, based on an Erlang distribution with age-varying rate

parameter, provides a plausible and easily-interpretable descrip-

tion of the incubation period of the R. solani–sugar beet patho-

system that could be used by practitioners to enhance the design of

strategies for prevention of root rot disease in sugar beet growing

areas.

Furthermore, we have demonstrated, using a spatially-explicit

epidemiological model, that the development of observable disease

epidemics can lag cryptic pathogen spread significantly (Fig. 7, 8 &

9). Such a lag can mislead crop practitioners that would observe

early disease in the field about the extent of infection and risk of

further disease, and cause inappropriate decision-making on

actions meant to mitigate disease development and economic loss.

It is important, therefore, that practitioners have quantitative data

about specific pathogen-crop incubation periods and, possibly,

alternative monitoring tools that would allow earlier pathogen

detection in a crop season. Citrus Huanglongbing is an example of

an aerial vector-borne disease with a very long incubation period,

where acquisition of knowledge about the incubation period has

been central to understanding the severe limitations to managing

this disease [48]. Likewise, it is important that epidemiological

models for predicting the risk of pathogen spread and disease and

the effectiveness of management strategies are parameterised using

appropriate incubation period assumptions and data [21]. For

example, with the simpler compartments models that assume

exponential incubation period distributions, we found that the

estimated lag between disease emergence and cryptic infection

spread is erroneously reduced. From a disease management

perspective, errors in model prediction such as this induced by the

use of unsuitable incubation period distributions, could lead to

inappropriate decision making regarding application of chemical

or biological treatments for preventing crop invasion by pathogens

that spread cryptically.

Individual-level data on incubation periods are rarely available

for plant, as well as human and animal diseases. The lack of data is

often due to difficulty in experimentation, but has additional

ethical constraints in the case human and animal diseases. For

plant diseases, the development of new monitoring tools such as

remote sensing or nuclear magnetic resonance [49,50] show

promise in improving the monitoring of diseases in perennial and

non-perennial crop systems, and, therefore, in helping practition-

ers and epidemiologists to detect pathogen infections and measure

incubation periods.

Our epidemiological model is an instance of a hierarchical

population dynamics system with hidden (unobserved) states

parameterised via individual-level observations. Therefore, a

combined empirical and modelling approach like the one we

have adopted could help to investigate the role of hidden states

and relationships in other population dynamics systems; for

example, hidden competition unbalances in communities affected

by disease [2,51] or hidden movement and behaviour of animals

[52,53].

Empirical data on the incubation period of plant-pathogen

systems could also be used to facilitate and refine the inference of

epidemiological parameters (e.g. rates of infection), that are

commonly hidden, from disease data sets. Nowadays, the study

of infectious diseases often involves the use of mechanistic-

statistical frameworks that incorporate a theoretical-mechanistic

population model and a statistical model of the observation

process [30,54]. Recent advances in stochastic integration

methods allow epidemiologists to estimate the parameters of

stochastic continuous-time models from censored, discrete and

incomplete observations of symptomatic individuals among the

susceptible population, using, for instance, Bayesian Markov chain

Monte Carlo inference methods with data-augmentation and

reversible-jump [30,55,56]. In this context, incubation period

distributions, fitted from empirical data, could be included into the

statistical model of the observation process. Albeit, uncertainty on

incubation period distributions may remain (especially if it exhibits

time-specificity), the introduction of such semi-empirical prior

information is likely to improve the numerical integration of the

model and refine the estimation of parameters associated with

hidden (e.g. latent) states. Regarding the spread R. solani in sugar

beet, a patho-system for which epidemiological parameters have

already been estimated from experimental data, but, with no

empirical knowledge on the incubation period [26], it would be

very interesting to see how the introduction of more realistic

incubation period distributions could affect the estimated param-

eters.

Finally, our approach combining experimentation and model-

ling may be difficult to apply to patho-systems that involve, for

example, perennial host crops (e.g. the spread of the fungal

soilborne pathogens Rigidoporus lignosus and Rhellinus noxius on

rubber trees [7,57]). In these cases, experimental measurements

may be difficult, but it may be doable to i) include incubation

periods and ii) estimate their distributions directly from observa-

tions of symptomatic individuals. As incubation period distribu-

tions are likely to exhibit some kind of time-(or age-) specificity, it

may be required to use and compare different semi-empirical

functions to capture changes in the mean incubation period with

host age or environmental variables.
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