73 research outputs found

    Heat capacity of α\alpha-GaN: Isotope Effects

    Full text link
    Until recently, the heat capacity of GaN had only been measured for polycrystalline powder samples. Semiempirical as well as \textit{first-principles} calculations have appeared within the past few years. We present in this article measurements of the heat capacity of hexagonal single crystals of GaN in the 20-1400K temperature range. We find that our data deviate significantly from the literature values for polycrystalline materials. The dependence of the heat capacity on the isotopic mass has also been investigated recently for monatomic crystals such as diamond, silicon, and germanium. Multi-atomic crystals are expected to exhibit a different dependence of these heat capacities on the masses of each of the isotopes present. These effects have not been investigated in the past. We also present \textit{first-principles} calculations of the dependence of the heat capacities of GaN, as a canonical binary material, on each of the Ga and N masses. We show that they are indeed different, as expected from the fact that the Ga mass affects mainly the acoustic, that of N the optic phonons. It is hoped that these calculations will encourage experimental measurements of the dependence of the heat capacity on isotopic masses in binary and more complex semiconductors.Comment: 12 pages, 5 Figures, submitted to PR

    Yellow fever vaccine viremia following ablative BM suppression in AML

    Get PDF
    Univ São Paulo, Sch Med, Dept Infect & Parasit Dis, São Paulo, BrazilHosp Sirio Libanes, São Paulo, BrazilUniv São Paulo, Sch Med, Div Clin Immunol & Allergy, São Paulo, BrazilFundacao Prosangue Hemoctr São Paulo, São Paulo, BrazilUniversidade Federal de São Paulo, Infect Dis Div DIPA, São Paulo, BrazilFundacao Oswaldo Cruz, Rio de Janeiro, BrazilUniversidade Federal de São Paulo, Infect Dis Div DIPA, São Paulo, BrazilWeb of Scienc

    New apparatus for DTA at 2000 bar: thermodynamic studies on Au, Ag, Al and HTSC oxides

    Full text link
    A new DTA (Differential Thermal Analysis) device was designed and installed in a Hot Isostatic Pressure (HIP) furnace in order to perform high-pressure thermodynamic investigations up to 2 kbar and 1200C. Thermal analysis can be carried out in inert or oxidising atmosphere up to p(O2) = 400 bar. The calibration of the DTA apparatus under pressure was successfully performed using the melting temperature (Tm) of pure metals (Au, Ag and Al) as standard calibration references. The thermal properties of these metals have been studied under pressure. The values of DV (volume variation between liquid and solid at Tm), ROsm (density of the solid at Tm) and ALPHAm (linear thermal expansion coefficient at Tm) have been extracted. A very good agreement was found with the existing literature and new data were added. This HP-DTA apparatus is very useful for studying the thermodynamics of those systems where one or more volatile elements are present, such as high TC superconducting oxides. DTA measurements have been performed on Bi,Pb(2223) tapes up to 2 kbar under reduced oxygen partial pressure (p(O2) = 0.07 bar). The reaction leading to the formation of the 2223 phase was found to occur at higher temperatures when applying pressure: the reaction DTA peak shifted by 49C at 2 kbar compared to the reaction at 1 bar. This temperature shift is due to the higher stability of the Pb-rich precursor phases under pressure, as the high isostatic pressure prevents Pb from evaporating.Comment: 6 figures, 3 tables, Thermodynamics, Thermal property, Bi-2223, fundamental valu

    The Short Range RVB State of Even Spin Ladders: A Recurrent Variational Approach

    Full text link
    Using a recursive method we construct dimer and nondimer variational ansatzs of the ground state for the two-legged ladder, and compute the number of dimer coverings, the energy density and the spin correlation functions. The number of dimer coverings are given by the Fibonacci numbers for the dimer-RVB state and their generalization for the nondimer ones. Our method relies on the recurrent relations satisfied by the overlaps of the states with different lengths, which can be solved using generating functions. The recurrent relation method is applicable to other short range systems. Based on our results we make a conjecture about the bond amplitudes of the 2-leg ladder.Comment: REVTEX file, 32 pages, 10 EPS figures inserted in text with epsf.st

    Green criminology: shining a critical lens on environmental harm

    Get PDF
    Green criminology provides for inter-disciplinary and multi-disciplinary engagement with environmental crimes and wider environmental harms. Green criminology applies a broad ‘‘green’’ perspective to environmental harms, ecological justice, and the study of environmental laws and criminality, which includes crimes affecting the environment and non-human nature. Within the ecological justice and species justice perspectives of green criminology there is a contention that justice systems need to do more than just consider anthropocentric notions of criminal justice, they should also consider how justice systems can provide protection and redress for the environment and other species. Green criminological scholarship has, thus, paid direct attention to theoretical questions of whether and how justice systems deal with crimes against animals and the environment; it has begun to conceptualize policy perspectives that can provide contemporary ecological justice alongside mainstream criminal justice. Moving beyond mainstream criminology’s focus on individual offenders, green criminology also explores state failure in environmental protection and corporate offending and environmentally harmful business practices. A central discussion within green criminology is that of whether environmental harm rather than environmental crime should be its focus, and whether green ‘‘crimes’’ should be seen as the focus of mainstream criminal justice and dealt with by core criminal justice agencies such as the police, or whether they should be considered as being beyond the mainstream. This article provides an introductory overview that complements a multi- and inter-disciplinary article collection dedicated to green criminological thinking and research

    Climate change litigation: a review of research on courts and litigants in climate government

    Get PDF
    Studies of climate change litigation have proliferated over the past two decades, as lawsuits across the world increasingly bring policy debates about climate change mitigation and adaptation, as well as climate change‐related loss and damage to the attention of courts. We systematically identify 130 articles on climate change litigation published in English in the law and social sciences between 2000 and 2018 to identify research trajectories. In addition to a budding interdisciplinarity in scholarly interest in climate change litigation we also document a growing understanding of the full spectrum of actors involved and implicated in climate lawsuits and the range of motivations and/or strategic imperatives underpinning their engagement with the law. Situating this within the broader academic literature on the topic we then highlight a number of cutting edge trends and opportunities for future research. Four emerging themes are explored in detail: the relationship between litigation and governance; how time and scale feature in climate litigation; the role of science; and what has been coined the “human rights turn” in climate change litigation. We highlight the limits of existing work and the need for future research—not limited to legal scholarship—to evaluate the impact of both regulatory and anti‐regulatory climate‐related lawsuits, and to explore a wider set of jurisdictions, actors and themes. Addressing these issues and questions will help to develop a deeper understanding of the conditions under which litigation will strengthen or undermine climate governance. This article is categorized under: Policy and Governance > Multilevel and Transnational Climate Change Governanc

    Nucleation and crystallization in bio-based immiscible polyester blends

    Get PDF
    Bio-based thermoplastic polyesters are highly promising materials as they combine interesting thermal and physical properties and in many cases biodegradability. However, sometimes the best property balance can only be achieved by blending in order to improve barrier properties, biodegradability or mechanical properties. Nucleation, crystallization and morphology are key factors that can dominate all these properties in crystallizable biobased polyesters. Therefore, their understanding, prediction and tailoring is essential. In this work, after a brief introduction about immiscible polymer blends, we summarize the crystallization behavior of the most important bio-based (and immiscible) polyester blends, considering examples of double-crystalline components. Even though in some specific blends (e.g., polylactide/polycaprolactone) many efforts have been made to understand the influence of blending on the nucleation, crystallization and morphology of the parent components, there are still many points that have yet to be understood. In the case of other immiscible polyester blends systems, the literature is scarce, opening up opportunities in this environmentally important research topic.The authors would like to acknowledge funding by the BIODEST project ((RISE) H2020-MSCA-RISE-2017-778092
    corecore