37 research outputs found
Diet and asthma: looking back, moving forward
Asthma is an increasing global health burden, especially in the western world. Public health interventions are sought to lessen its prevalence or severity, and diet and nutrition have been identified as potential factors. With rapid changes in diet being one of the hallmarks of westernization, nutrition may play a key role in affecting the complex genetics and developmental pathophysiology of asthma. The present review investigates hypotheses about hygiene, antioxidants, lipids and other nutrients, food types and dietary patterns, breastfeeding, probiotics and intestinal microbiota, vitamin D, maternal diet, and genetics. Early hypotheses analyzed population level trends and focused on major dietary factors such as antioxidants and lipids. More recently, larger dietary patterns beyond individual nutrients have been investigated such as obesity, fast foods, and the Mediterranean diet. Despite some promising hypotheses and findings, there has been no conclusive evidence about the role of specific nutrients, food types, or dietary patterns past early childhood on asthma prevalence. However, diet has been linked to the development of the fetus and child. Breastfeeding provides immunological protection when the infant's immune system is immature and a modest protective effect against wheeze in early childhood. Moreover, maternal diet may be a significant factor in the development of the fetal airway and immune system. As asthma is a complex disease of gene-environment interactions, maternal diet may play an epigenetic role in sensitizing fetal airways to respond abnormally to environmental insults. Recent hypotheses show promise in a biological approach in which the effects of dietary factors on individual physiology and immunology are analyzed before expansion into larger population studies. Thus, collaboration is required by various groups in studying this enigma from epidemiologists to geneticists to immunologists. It is now apparent that this multidisciplinary approach is required to move forward and understand the complexity of the interaction of dietary factors and asthma
The Emergence of Emotions
Emotion is conscious experience. It is the affective aspect of consciousness. Emotion arises from sensory stimulation and is typically accompanied by physiological and behavioral changes in the body. Hence an emotion is a complex reaction pattern consisting of three components: a physiological component, a behavioral component, and an experiential (conscious) component. The reactions making up an emotion determine what the emotion will be recognized as. Three processes are involved in generating an emotion: (1) identification of the emotional significance of a sensory stimulus, (2) production of an affective state (emotion), and (3) regulation of the affective state. Two opposing systems in the brain (the reward and punishment systems) establish an affective value or valence (stimulus-reinforcement association) for sensory stimulation. This is process (1), the first step in the generation of an emotion. Development of stimulus-reinforcement associations (affective valence) serves as the basis for emotion expression (process 2), conditioned emotion learning acquisition and expression, memory consolidation, reinforcement-expectations, decision-making, coping responses, and social behavior. The amygdala is critical for the representation of stimulus-reinforcement associations (both reward and punishment-based) for these functions. Three distinct and separate architectural and functional areas of the prefrontal cortex (dorsolateral prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex) are involved in the regulation of emotion (process 3). The regulation of emotion by the prefrontal cortex consists of a positive feedback interaction between the prefrontal cortex and the inferior parietal cortex resulting in the nonlinear emergence of emotion. This positive feedback and nonlinear emergence represents a type of working memory (focal attention) by which perception is reorganized and rerepresented, becoming explicit, functional, and conscious. The explicit emotion states arising may be involved in the production of voluntary new or novel intentional (adaptive) behavior, especially social behavior