97 research outputs found

    Theory of double resonance magnetometers based on atomic alignment

    Get PDF
    We present a theoretical study of the spectra produced by optical-radio-frequency double resonance devices, in which resonant linearly polarized light is used in the optical pumping and detection processes. We extend previous work by presenting algebraic results which are valid for atomic states with arbitrary angular momenta, arbitrary rf intensities, and arbitrary geometries. The only restriction made is the assumption of low light intensity. The results are discussed in view of their use in optical magnetometers

    Sensitivity of double resonance alignment magnetometers

    Get PDF
    We present an experimental study of the intrinsic magnetometric sensitivity of an optical/rf-frequency double resonance magnetometer in which linearly polarized laser light is used in the optical pumping and detection processes. We show that a semi-empirical model of the magnetometer can be used to describe the magnetic resonance spectra. Then, we present an efficient method to predict the optimum operating point of the magnetometer, i.e., the light power and rf Rabi frequency providing maximum magnetometric sensitivity. Finally, we apply the method to investigate the evolution of the optimum operating point with temperature. The method is very efficient to determine relaxation rates and thus allowed us to determine the three collisional disalignment cross sections for the components of the alignment tensor. Both first and second harmonic signals from the magnetometer are considered and compared

    Відцентровий дезінтегратор з гідростатичною підвіскою розгінного ротора

    Get PDF
    Постановка проблеми. Стаття стосується випробовування відцентрового дезінтегратора ЦД-10 з гідростатичною підвіскою розгінного ротора. Мета. Введення у науковий обіг дослідницької інформації щодо результатів випробування дезінтегратора ЦД-10 для дроблення магнетитових руд, будівельних матеріалів і промислових відходів (пластин феритових магнітів). Методи і апаратура. Відцентровий дезінтегратор ЦД-10. Результати. Розроблена вітчизняна конструкція дезінтегратора відцентрового типу з гідростатичною підвіскою розгінного ротора. Проведені випробування дезінтегратора підтвердили його достатню працездатність і надійність та можливість отримання необ-хідних технологічних показників. Наукова цінність розробки. Випробувано інноваційну конструкцію відцентрованого дезінтегратора, особливістю якого є гідростатичний вузол підвіски ротора, який дозволяє зменшити дисбаланс ротора і вібраційні навантаження. Практичне значення. Встановлено високу ефективність застосування розробленої конструкції дезінтегратора ЦД-10 для дроблення магнетитових руд, будівельних матеріалів і промислових відходів. Науково-технічні розробки по гідростатичній підвісці розгінного ротора реалізовані при для дезінтегратора продуктивністю 5-10 т/год.Formulation of the problem. The article concerns the test of a centrifugal disintegrator СD-10 with hydrostatic suspension of an accelerating rotor. Goal. Introduction into scientific circulation of research information on the results of testing the СD-10 disintegrator for crushing ores, building materials and industrial waste (ferrite magnet plates). Methods and equipment. Centrifugal disintegrator CD-10. Results. A domestic design of a centrifugal disintegrator with a hydrostatic suspension of an accelerating rotor has been developed. The tests of the disintegrator confirmed its sufficient performance and reliability and the ability to obtain the necessary technological indicators. Scientific value of development. The innovative design of the centrifugal disintegrator is tested, the feature of which is the hydrostatic rotor suspension assembly. Such a unit that allows you to reduce the imbalance of the rotor and vibration loads. Practical value. The high efficiency of using the developed design of the CD-10 disintegrator for crushing ores, building materials and industrial waste has been established. Scientific and tech-nical developments on the hydrostatic suspension of an accelerating rotor are implemented for a disintegrator with a productivity of 5-10 t/h

    Assessment of correlation energies based on the random-phase approximation

    Full text link
    The random-phase approximation to the ground state correlation energy (RPA) in combination with exact exchange (EX) has brought Kohn-Sham (KS) density functional theory one step closer towards a universal, "general purpose first principles method". In an effort to systematically assess the influence of several correlation energy contributions beyond RPA, this work presents dissociation energies of small molecules and solids, activation energies for hydrogen transfer and non-hydrogen transfer reactions, as well as reaction energies for a number of common test sets. We benchmark EX+RPA and several flavors of energy functionals going beyond it: second-order screened exchange (SOSEX), single excitation (SE) corrections, renormalized single excitation (rSE) corrections, as well as their combinations. Both the single excitation correction as well as the SOSEX contribution to the correlation energy significantly improve upon the notorious tendency of EX+RPA to underbind. Surprisingly, activation energies obtained using EX+RPA based on a KS reference alone are remarkably accurate. RPA+SOSEX+rSE provides an equal level of accuracy for reaction as well as activation energies and overall gives the most balanced performance, which makes it applicable to a wide range of systems and chemical reactions.Comment: 14 pages, 5 figures, full articl

    Ibrutinib added to 10-day decitabine for older patients with AML and higher risk MDS

    Get PDF
    The treatment of older, unfit patients with acute myeloid leukemia (AML) is challenging. Based on preclinical data of Bruton tyrosine kinase expression/phosphorylation and ibrutinib cytotoxicity in AML blasts, we conducted a randomized phase 2 multicenter study to assess the tolerability and efficacy of the addition of ibrutinib to 10-day decitabine in unfit (ie, Hematopoietic Cell Transplantation Comorbidity Index ≥3) AML patients and higher risk myelodysplasia patients (HOVON135/SAKK30/15 trial). In total, 144 eligible patients were randomly (1:1) assigned to either 10-day decitabine combined with ibrutinib (560 mg; sequentially given, starting the day after the last dose of decitabine) (n = 72) or to 10-day decitabine (n = 72). The addition of ibrutinib was well tolerated, and the number of adverse events was comparable for both arms. In the decitabine plus ibrutinib arm, 41% reached complete remission/complete remission with incomplete hematologic recovery (CR/CRi), the median overall survival (OS) was 11 months, and 2-year OS was 27%; these findings compared with 50% CR/CRi, median OS of 11.5 months, and 2-year OS of 21% for the decitabine group (not significant). Extensive molecular profiling at diagnosis revealed that patients with STAG2, IDH2, and ASXL1 mutations had significantly lower CR/CRi rates, whereas patients with mutations in TP53 had significantly higher CR/CRi rates. Furthermore, multicolor flow cytometry revealed that after 3 cycles of treatment, 28 (49%) of 57 patients with available bone marrow samples had no measurable residual disease. In this limited number of cases, measurable residual disease revealed no apparent impact on event-free survival and OS. In conclusion, the addition of ibrutinib does not improve the therapeutic efficacy of decitabine. This trial was registered at the Netherlands Trial Register (NL5751 [NTR6017]) and has EudraCT number 2015-002855-85

    Siesta: Recent developments and applications

    Get PDF
    A review of the present status, recent enhancements, and applicability of the SIESTA program is presented. Since its debut in the mid-1990s, SIESTA’s flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of SIESTA combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a realspace grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin–orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as WANNIER90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering SIESTA runs, and various post-processing utilities. SIESTA has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments. Published under license by AIP Publishing.Siesta development was historically supported by different Spanish National Plan projects (Project Nos. MEC-DGES-PB95-0202, MCyT-BFM2000-1312, MEC-BFM2003-03372, FIS2006-12117, FIS2009-12721, FIS2012-37549, FIS2015-64886-P, and RTC-2016-5681-7), the latter one together with Simune Atomistics Ltd. We are thankful for financial support from the Spanish Ministry of Science, Innovation and Universities through Grant No. PGC2018-096955-B. We acknowledge the Severo Ochoa Center of Excellence Program [Grant Nos. SEV-2015-0496 (ICMAB) and SEV-2017-0706 (ICN2)], the GenCat (Grant No. 2017SGR1506), and the European Union MaX Center of Excellence (EU-H2020 Grant No. 824143). P.G.-F. acknowledges support from Ramón y Cajal (Grant No. RyC-2013-12515). J.I.C. acknowledges Grant No. RTI2018-097895-B-C41. R.C. acknowledges the European Union’s Horizon 2020 Research and Innovation Program under Marie Skłodoswka-Curie Grant Agreement No. 665919. D.S.P, P.K., and P.B. acknowledge Grant No. MAT2016-78293-C6, FET-Open No. 863098, and UPV-EHU Grant No. IT1246-19. V. W. Yu was supported by a MolSSI Fellowship (U.S. NSF Award No. 1547580), and V.B. and V.W.Y. were supported by the ELSI Development by the NSF (Award No. 1450280). We also acknowledge Honghui Shang and Xinming Qin for giving us access to the honpas code, where a preliminary version of the hybrid functional support described here was implemented. We are indebted to other contributors to the Siesta project whose names can be seen in the Docs/Contributors.txt file of the Siesta distribution, and we thank those, too many to list, contributing fixes, comments, clarifications, and documentation for the code.Peer reviewe

    Siesta: Recent developments and applications

    Get PDF
    A review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta?s flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin?orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as wannier90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering Siesta runs, and various post-processing utilities. Siesta has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments.SIESTA development was historically supported by different Spanish National Plan projects (Project Nos. MEC-DGES-PB95-0202, MCyT-BFM2000-1312, MEC-BFM2003-03372, FIS2006-12117, FIS2009-12721, FIS2012-37549, FIS2015-64886-P, and RTC-2016-5681-7), the latter one together with Simune Atomistics Ltd. We are thankful for financial support from the Spanish Ministry of Science, Innovation and Universities through Grant No. PGC2018-096955-

    Age and sex associate with outcome in older AML and high risk MDS patients treated with 10-day decitabine

    Get PDF
    Treatment choice according to the individual conditions remains challenging, particularly in older patients with acute myeloid leukemia (AML) and high risk myelodysplastic syndrome (MDS). The impact of performance status, comorbidities, and physical functioning on survival is not well defined for patients treated with hypomethylating agents. Here we describe the impact of performance status (14% ECOG performance status 2), comorbidity (40% HCT-comorbidity index ≥ 2), and physical functioning (41% short physical performance battery  76 years was significantly associated with reduced OS (HR 1.58; p = 0.043) and female sex was associated with superior OS (HR 0.62; p = 0.06). We further compared the genetic profiles of these subgroups. This revealed comparable mutational profiles in patients younger and older than 76 years, but, interestingly, revealed significantly more prevalent mutated ASXL1, STAG2, and U2AF1 in male compared to female patients. In this cohort of older patients treated with decitabine age and sex, but not comorbidities, physical functioning or cytogenetic risk were associated with overall survival

    Computational Lipidology: Predicting Lipoprotein Density Profiles in Human Blood Plasma

    Get PDF
    Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond “bad” and “good” cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL), we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile) is calculated. As our main results, we (i) successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii) assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS), revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii) present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia
    corecore