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Sensitivity of double-resonance alignment magnetometers

Gianni Di Domenico,* Hervé Saudan, Georg Bison, Paul Knowles, and Antoine Weis
Physics Department, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland

We present an experimental study of the intrinsic magnetometric sensitivity of an optical or rf-frequency
double-resonance magnetometer in which linearly polarized laser light is used in the optical pumping and
detection processes. We show that a semiempirical model of the magnetometer can be used to describe the
magnetic resonance spectra. Then, we present an efficient method to predict the optimum operating point of the
magnetometer, i.e., the light power and rf Rabi frequency providing maximum magnetometric sensitivity.
Finally, we apply the method to investigate the evolution of the optimum operating point with temperature. The
method is very efficient to determine relaxation rates and thus allowed us to determine the three collisional
disalignment cross sections for the components of the alignment tensor. Both first and second harmonic signals
from the magnetometer are considered and compared.

I. INTRODUCTION

Our group develops optically pumped alkali-metal-atom
vapor magnetometers �OPM� for both applied �1� and funda-
mental �2� research. The diverse requirements of these de-
manding applications, in terms of sensitivity, spatial resolu-
tion, scalability, and measurement bandwidth, warrants
investigation of new OPM schemes. An interesting and
promising avenue is the use of atomic alignment instead of
orientation to probe the external magnetic field. We will re-
fer to an OPM based on atomic alignment as DRAM
�double-resonance alignment magnetometer�, while we will
speak of DROM �double-resonance orientation magnetome-
ter� when the magnetization has the symmetry of an atomic
orientation. Recently, our group presented both theoretical
�3� and experimental �4� investigations of the magnetic reso-
nance spectra produced in a cesium vapor in which an align-
ment is created and detected by a single linearly polarized
laser beam.

Of direct importance for us, the DRAM scheme has a
more flexible geometry than the well-known DROM Mx con-
figuration �5�. For maximal sensitivity, the DROM scheme
requires a 45° angle between the laser beam and the mag-
netic field �5�, limiting applications calling for a compact
arrangement of multiple sensors. In multichannel devices, as
required for cardiomagnetic measurements �6� for example,
the DRAM method offers the advantage that the laser beam
can be oriented either parallel or perpendicular to the offset
field without loss of sensitivity.

The line shapes of the second harmonic DRAM signal
have significantly narrower linewidths than the DROM sig-
nal under identical conditions. Narrow linewidths suppress
systematic errors in optical magnetometers, visible as long
term baseline drifts, and potentially increase the magneto-
metric sensitivity. This means that a DRAM could lead to a
higher magnetometric sensitivity than a DROM for equal
signal to noise ratio.

Moreover, in DROM devices the interaction of the atoms
with the circularly polarized laser light leads to an M depen-

dent energy shift of the Zeeman hyperfine components when
the laser frequency is not centered on the optical resonance
line, the so-called light shift �7,8�. In that case, the effect of
laser power and frequency changes is indistinguishable from
the effect of magnetic field changes, thus limiting the mag-
netometric performance and introducing systematic uncer-
tainties on the determination of the absolute value of the
field. In the DRAM, the linearly polarized light produces a
light shift depending on M2, which does not have the same
characteristics as a magnetic field Zeeman interaction. The
M2 shift broadens the magnetic resonance line, thereby
slightly reducing the magnetic sensitivity, but it will not shift
the resonance frequency. The absence of linear M-dependent
systematic resonance shifts make the DRAM an attractive
magnetometer for precision experiments searching for
M-dependent effects, such as electric dipole moment
searches �9�.

In this article, we present an experimental study of the
magnetometric sensitivity of a double-resonance alignment
magnetometer. The principle of the DRAM with its theoret-
ical description is given in Sec. II, the experimental setup is
described in Sec. III, and the operational definition of the
magnetometric sensitivity is introduced in Sec. IV. Then, in
Sec. V we show that a simple empirical extension of the
DRAM model extends its validity to significantly higher la-
ser powers. This extended model is used in Sec. VI, where
we develop a method to predict the optimum operating point
of the DRAM based on physical parameters extracted from
specific measurements. Finally, the method is applied in Sec.
VII to determine the temperature dependence of the DRAM
optimum operating point, and the results obtained for differ-
ent cells are compared in Sec. VIII.

II. DOUBLE-RESONANCE ALIGNMENT
MAGNETOMETER

The geometry of a double-resonance alignment magneto-
meter is presented in Fig. 1: It is identical to the one de-
scribed in �3�. A linearly polarized laser beam, with polariza-
tion � inclined at angle � to the magnetic field to be
measured, B0, is used to create an atomic alignment via op-*Gianni.DiDomenico@unifr.ch
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tical pumping in a room temperature vapor of cesium atoms.
This alignment precesses under the simultaneous action of
the static magnetic field B0 and a much weaker magnetic
field B1, called the rf field, rotating at frequency � in the
plane perpendicular to B0 and driving the magnetic reso-
nance transitions. Competition between relaxation, optical
pumping, and magnetic resonance produces a steady state in
the rotating frame.

The precession of the alignment generates modulations of
the absorption coefficient which create signals at both the
fundamental ��� and the second harmonic �2�� of the ap-
plied rf frequency �. The magnetic resonance signals S��t�
and S2��t� are obtained here by monitoring the transmitted
light power with a photodiode. A discussion of the physical
origins of these signals is given in Sec. IV A of �3�.

The details of the calculation of S��t� and S2��t� are given
in �3�; therefore only the most relevant equations needed for
the magnetometric analysis are reproduced here. The mag-
netic resonance signals can be written as

S��t� = A0h�����D����cos��t − ��− A����sin��t − ��� ,

�1a�

S2��t� = A0h2�����− A2����cos�2�t − 2��

− D2����sin�2�t − 2��� , �1b�

where A0 is the alignment, defined in �3�, produced by the
optical pumping. The angular dependencies of the first and
second harmonic signals are given by

h���� =
3

16
�2 sin 2� + 3 sin 4�� , �2a�

h2���� =
3

32
�1 − 4 cos 2� + 3 cos 4�� , �2b�

where � is the angle between the light polarization and the
static field B0. The first and second harmonic signals have
both absorptive, A����, A2����, and dispersive, D����,
D2����, components in their line shapes, given by

D���� =
��0�1��2

2 + 4�2 − 2�1
2�

Z���
, �3a�

A���� =
�0�1���2

2 + 4�2��1 + �2�1
2�

Z���
, �3b�

D2���� =
��0�1

2�2�1 + �2�
Z���

, �3c�

A2���� =
�0�1

2��1�2 − 2�2 + �1
2�

Z���
, �3d�

with a resonance denominator,

Z��� = �0��1
2 + �2���2

2 + 4�2� + ��1�2�2�0 + 3�2�

− 4�2��0 − 3�1���1
2 + ��0 + 3�2��1

4. �4�

In Eqs. �3a�–�3d� and �4�, �1=�FB1 is the Rabi frequency of
the rf field where �F is the gyromagnetic ratio of the ground
state hyperfine level F. The detuning �=�−�0 is the differ-
ence between the rf frequency � and the Larmor frequency
�0=�FB0, and �0 ,�1 ,�2 are alignment relaxation rates.
More precisely, the DRAM model �3� calculates the evolu-
tion of the alignment multipole moments m2,q via a density
matrix approach �for a general introduction to the use of
multipole moments in the density matrix formalism, see
�10��. The moments m2,q are defined with respect to a quan-
tization axis aligned with B0 and relax with rates ��q�. In
practice, both the absorptive A����, A2����, and dispersive,
D����, D2����, components of the signals can be used to
measure the magnetic field, and can be isolated by phase-
sensitive detection of the transmission signals S��t� and
S2��t�.

The effect of �, the angle between the linear polarization
vector and the static magnetic field, is contained in the func-
tions h���� and h2����. The first harmonic signal is maxi-
mized for �=25.5° and the second harmonic signal for �
=90°. Thus we distinguish between the following two real-
izations of the DRAM: �1� The first harmonic DRAM,
choosing �=25.5° and measuring A���� and D����, and �2�
the second harmonic DRAM, choosing �=90° and measur-
ing A2���� and D2����.

Since the line shapes are different, we expect the two
realizations of the DRAM to result in distinct optimum op-
erating points and magnetometric sensitivities.

III. EXPERIMENTAL SETUP

The experimental setup used for the optimization proce-
dure is shown in Fig. 2. A Pyrex cell, paraffin-coated for spin
relaxation suppression and evacuated except for an atomic
cesium vapor in thermal equilibrium with a metal droplet,
provided the paramagnetic atom sample. More details on the
cell will be given in Sec. VIII. The cell was isolated from
ambient magnetic fields by a three-layer �-metal shield �in-
ner diameter 300 mm, length 580 mm, and outer diameter
590 mm�. Inside the shield, a primary pair of Helmholtz coils

k

B
0

B
1

�

�

�

FIG. 1. Double-resonance magnetometer geometry using lin-
early polarized light. Here, k is the direction of the linearly polar-
ized laser beam. The rf field B1 �shown here at t=0� rotates in a
plane perpendicular to the static field B0. The linear polarization
vector � makes an angle � with the static field B0, and the phase of
B1 is characterized by �.
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produced a static magnetic field B0 of about 3 �T perpen-
dicular to the light propagation direction. Additional or-
thogonal pairs of Helmholtz coils �only one pair is shown in
Fig. 2� were used to suppress residual fields and gradients.
An rf magnetic field B1, rotating at approximately 10 kHz in
the plane perpendicular to the static magnetic field, was cre-
ated by a set of two pairs of Helmholtz coils, wound on the
same supports as the static field coils. All internal structural
components were made from nonmagnetic materials.

The laser beam �diameter �3 mm� used to pump and
probe the atomic vapor confined in the cell was generated by
a distributed feedback �DFB� diode laser, with a wavelength
of 894 nm, stabilized to the 6S1/2 , Fg=4→6P1/2 , Fe=3
hyperfine transition by means of a dichroic atomic vapor
laser lock �DAVLL� �11�. A linear polarizer followed by a
half-wave plate prepared linearly polarized light of adjust-
able orientation � with respect to B0. The residual circular
polarization contamination was measured to be less than 1%.
A nonmagnetic photodiode, followed by a low-noise tran-
simpedance amplifier, detected the light power transmitted
through the cell. The resulting signal was analyzed by a
lock-in amplifier tuned either to the first or second harmonic
of the rf frequency, depending on the DRAM configuration
under study �cf. Sec. II�. A computer recorded magnetic reso-
nance spectra by initiating the rf frequency sweep and simul-
taneously recording the in-phase and quadrature signals from
the lock-in amplifier. The computer also controlled the light
and rf power delivered to the cell and measured the total
light power on the photodiode as well as the temperature of
the apparatus. The system was thus automated and could
make measurements of the magnetic resonance signals for
ranges of light and rf powers. Forced air heating was used to
make temperature changes to the system, changes that were

slow with respect to the time needed to record one spectrum.
In practice, lock-in detection of the signals given by Eqs.

�1a� and �1b� with respect to the rf frequency � adds a phase
�l �selectable in the lock-in amplifier� and a small pickup
signal p�1,2��A,D� �smaller than 1% of the signal at maximum�
to each of the line shapes given by Eqs. �3a�–�3d� �4�. Due to
�l, the in-phase and quadrature spectra are, in general, a
mixture of dispersive and absorptive line shapes. Demodula-
tion of the signal Eq. �1a� yields expressions used to fit the
recorded in-phase and quadrature spectra

I���� = g��PL�h������D���� + p1D�cos�� + �l�

+ �A���� + p1A�sin�� + �l�	 , �5a�

Q���� = g��PL�h������A���� + p1A�cos�� + �l�

− �D���� + p1D�sin�� + �l�	 . �5b�

The g��PL� factor is used here to contain not only ampli-
fier gain factors, but also the alignment A0 and any light
power, PL, dependencies. A similar mix of A2���� and
D2���� was used for the second harmonic signal given by
Eq. �1b�.

Typical measured signals for the first and second har-
monic magnetic resonance spectra are presented in Fig. 3,
together with fits of the theoretical line shapes given by Eqs.

FIG. 2. Experimental setup: A cell containing Cs vapor was
mounted inside a three-axis Helmholtz coil array all placed inside a
three-layer �-metal shield. The polarization angle �, measured with
respect to the offset field B0, was set by a linear polarizer followed
by a half-wave plate �	 /2� located outside the shield for ease of
access. The laser light traversed the cell and was converted to a
current by a nonmagnetic photodiode �PD�. All details can be found
in the text.

FIG. 3. �Color online� Measurements �circles� of the in-phase
and quadrature magnetic resonance signals detected as amplitude
modulations of the transmitted light power. �a� First harmonic sig-
nals. �b� Second harmonic signals. The statistical uncertainty on
each data point is represented by the symbol size. The solid lines
are fits of the theoretical line shapes given by Eqs. �3a� and �5b�.
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�3a� and �5b�. All four curves are fitted simultaneously with
one set of relaxation rates; for the presented data �0=2

�1.64�2� Hz, �1=2
�2.93�2� Hz, and �2=2

�3.08�2� Hz. Detailed information on the fitting procedure
is found in �4�. The excellent quality of the fits allows us to
extract the amplitude g, the relaxation rates �i, and the Rabi
frequency �1 from a single set of double-resonance spectra.
For that reason, no calibration of the rf coils is needed. This
is an advantage compared to the DROM where the Rabi
frequency and the longitudinal relaxation rate are correlated
with the point where they cannot be individually extracted
from measured line shapes.

IV. MAGNETOMETRIC SENSITIVITY

The dispersive magnetic resonance line shapes given by
Eqs. �3a� and �3c� have a linear dependence on the detuning
�=�−�FB0 at the center of the resonance. By proper choice
of �l, the quadrature signal, Eq. �5b�, can be made com-
pletely dispersive, giving direct access to the linear zero
crossing of the resonance,

Q��B0� = g��PL�h����D��� − �FB0� , �6�

with a similar expression for the 2� resonance. At constant
�, Q� can be used as a magnetometer signal for a limited
range of magnetic field strengths ��−�FB0���, where � is
the resonance linewidth. In that range, a change of B0 by a
small �B0 can be measured as a change of Q� by the amount

�Q� = �B0
dQ�

dB0



B0=�/�F

= �B0t�. �7�

The slope t� is obtained from fits of the dispersive experi-
mental magnetic resonance line shape �Fig. 3� using the re-
lation

t� = 
dQ�

dB0



B0=�/�F

=
− 1

�F

dQ�

d�



�=0
. �8�

Again, similar relations were used for the 2� signals.
The noise equivalent magnetic field �NEM� represents the

noise limit on the derived value of B given the noise in Q.
The total noise in Q has contributions from external mag-
netic field fluctuations and from all sources of technical
noise, like laser intensity and frequency noise �converted to
intensity noise by the atomic vapor�, electronic noise, and so
on. All technical noises can, in principle, be reduced until the
system reaches the fundamental limit arising from the pho-
tocurrent shot noise. Therefore, we use the shot noise limited
NEM as the measure for comparing the performance of dif-
ferent magnetometric schemes �1�.

The root spectral density of the photocurrent shot noise is
given by


S = R�2eIdc, �9�

where R is the transimpedance gain of the current amplifier,
e the electron charge, and Idc the dc photocurrent. Given 
S,
the NEM can be expressed as a root spectral density of field
fluctuations by inverting Eq. �7�

NEM =

S

�t��
. �10�

Since 
S was evaluated from a measurement of the photocur-
rent before the lock-in amplifier, the internal gain correction
of the lock-in was used to give a measurement of t� usable in
Eq. �10�.

The goal of this study was to find the optimum DRAM
operating parameters, PL and �1, yielding maximum magne-
tometric sensitivity, i.e., minimal NEM.

V. EMPIRICAL EXTENSION OF THE DRAM MODEL

As discussed in �3,4�, the analytical expressions for the
DRAM model �Eqs. �1a� and �4�� are valid for low laser
power only; however, empirical formulas were presented
modeling the light power dependence of the relaxation rates
and of the global amplitude factors of the DRAM signals.
Here, we present improved empirical formulas extending the
DRAM model to even higher light powers, our goal being to
cover the power domain that must be explored while opti-
mizing the magnetometer.

The following empirical formula successfully represents
the laser power dependence of the first harmonic signal,

g��PL� = C
PL

2

�PS1 + PL��PS2 + PL�
, �11�

where C is a constant and PS1, PS2 are experimentally deter-
mined saturation powers for which we currently have no rig-
orous model in terms of fundamental physical constants and
processes. A similar formula applies to the second harmonic
amplitude, but requires different values for both the constant
and the saturation powers. The model reflects the expectation
that both the creation of alignment as well as the ability to
probe the alignment will saturate with increasing power.

In a similar way, the PL dependence of the relaxation rates
has been modeled by a power series, and good agreement
with the measured data was found using a second order poly-
nomial for each rate

�0�PL� = �00 + �0PL + �0PL
2 , �12a�

�1�PL� = �10 + �1PL + �1PL
2 , �12b�

�2�PL� = �20 + �2PL + �2PL
2 . �12c�

We call the following parameter set the extended DRAM
model parameters

�C,PS1,PS2,�00,�0,�0,�10,�1,�1,�20,�2,�2	 �13�

and note that they have to be determined experimentally. For
that purpose, we have measured a series of double-resonance
spectra as a function of laser power and extracted the ampli-
tude and relaxation rates from the simultaneous fits, using
common parameters, of the theoretical line shapes given by
Eqs. �3a� and �5b� to the experimental data, as explained in
�4�. The measurements were made separately for the first
harmonic, with �=25.5°, and for the second harmonic, with
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�=90°. The results are presented in Fig. 4 �Fig. 5� for the
first �second� harmonic signals.

For determining C, PS1, and PS2, the empirical model of
Eq. �11� was fitted to the amplitude data and the resulting fits
are displayed as solid lines in the upper graphs of Figs. 4 and
5. To find the remaining extended parameters, �00, �10, �20,
�0, �1, �2, �0, �1, and �2, the empirical model of Eqs.
�12a�–�12c� was fitted to the PL dependence of the measured
relaxation rates, and the resulting fits are displayed as solid
lines in the lower graphs of Figs. 4 and 5. Clearly, the ex-
tended model accurately represents the data over the whole
range of light powers investigated.

Table I summarizes the extended DRAM model param-
eters for both the first and the second harmonic signals. The
expectation, based on the cylindrical symmetry of the physi-
cal system, that �10 should equal �20 is not reflected in the
data, but the discussion of this will be delayed until Sec. VII.

VI. PREDICTION OF THE DRAM OPTIMUM
OPERATING POINT

A. Description of the method

The optimum operating point of a DRAM can be pre-
dicted from the measured extended DRAM parameters pre-

sented in the preceding section. Here, the optimum operating
point refers to the laser power PL and Rabi frequency �1,
which minimize the intrinsic NEM defined in Eq. �10�. In

TABLE I. Experimental values of the extended DRAM model
parameters extracted from the fits to the experimental data pre-
sented in Figs. 4 and 5. Only statistical uncertainties are shown. See
text for details.

Fit parameters �=25.5° �=90°

C 3.1�3� V 1.0�2� V

PS1 1.7�2� �W 1.2�2� �W

PS2 24�3� �W 11�3� �W

�00/2
 1.86�1� Hz 2.03�3� Hz

�10/2
 3.27�1� Hz 3.34�2� Hz

�20/2
 3.58�5� Hz 3.31�1� Hz

�0 /2
 0.492�4� Hz/�W 1.21�1� Hz/�W

�1 /2
 0.934�7� Hz/�W 1.33�1� Hz/�W

�2 /2
 1.55�3� Hz/�W 0.946�4� Hz/�W

�0 /2
 −5.6�5� mHz/�W2 −28�2� mHz/�W2

�1 /2
 −8.9�9� mHz/�W2 −24�1� mHz/�W2

�2 /2
 −26�3� mHz/�W2 −13.4�5� mHz/�W2
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FIG. 4. �a� First harmonic DRAM signal amplitude as a function
of laser power. �b� Relaxation rates as a function of laser power.
Points are measured values, extracted from the fit of the DRAM
model �Eqs. �3a�–�3d�� to the experimental magnetic resonance
spectra. The solid lines are fits of the extended DRAM model �Eqs.
�11� and �12a�–�12c�� to the experimental data. The data were mea-
sured at room temperature from a first harmonic DRAM with �
=25.5° and �1=2
�8.3 Hz.
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FIG. 5. �a� Second harmonic DRAM signal amplitude as a func-
tion of laser power. �b� Relaxation rates as a function of laser
power. Points are measured values extracted from the fit of the
DRAM model �Eqs. �3a�–�3d�� to the experimental magnetic reso-
nance spectra. The solid lines are fits of the extended DRAM model
�Eqs. �11� and �12a�–�12c�� to the experimental data. The data were
measured at room temperature from a second harmonic DRAM
with �=90° and �1=2
�8.3 Hz.

5



ht
tp

://
do

c.
re

ro
.c

h

that equation, the photocurrent shot noise 
s is calculated
from the dc photocurrent using Eq. �9� and the on-resonance
slope of the magnetometer signal is calculated from the de-
rivative of the dispersive component of the resonance spec-
tra; see Eqs. �6� and �8�. By direct differentiation, we obtain


dQ�

d�



�=0
=

g��PL�h�����0��2
2 − 2�1

2��1

��1�2 + �1
2���0�1�2 + ��0 + 3�2��1

2�
�14�

for the slope of the first harmonic signal and


dQ2�

d�



�=0
=

g2��PL�h2�����0�2�1 + �2��1
2

��1�2 + �1
2���0�1�2 + ��0 + 3�2��1

2�
�15�

for the slope of the second harmonic signal. Combining the
above with the power scaling model of Eqs. �11� and �12a�–
�12c� and using the result in Eq. �10�, the intrinsic NEM as a
function of laser power PL and Rabi frequency �1 is found.

This NEM function has been calculated for the extended
DRAM model parameters given in Table I. The resulting
contour plots of NEM as a function of PL and �1 are pre-

sented in the upper graph of Fig. 6 for the first harmonic
DRAM and in the upper graph of Fig. 7 for the second har-
monic DRAM. Both graphs show a clear optimum point
where the NEM is minimum. Table II lists the coordinates of
these optimum points, together with the corresponding NEM
value.

For the first harmonic DRAM, Fig. 6 shows a diagonal
valley along �1=�2�PL� /�2 where the NEM is maximized

TABLE II. Theory predictions of laser power PL and rf field
Rabi frequency �1 minimizing the NEM compared to the experi-
mental best values. The calculations used the empirical extension of
the DRAM model from Sec. V.

DRAM
scheme

Optimum PL

��W�
Optimum �1 /2


�Hz�
NEM

�fT/�Hz�

Theor. 1� 5.4 2.34 35.5

Expt. 1� 5.1�2� 2.40�5� 35.7�7�
Theor. 2� 4.2 5.4 32.8

Expt. 2� 4.5�2� 5.6�1� 32.6�6�
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FIG. 6. First harmonic DRAM with �=25.5°. The upper graph
is a contour plot of the NEM as a function of PL and �1 /2
. The
NEM values were calculated using the method developed in Sec.
VI A. The cross indicates the position where the NEM is minimum
�see Table II�. The contour lines start at 40 fT/�Hz and are spaced
by 10 fT/�Hz. The dots indicate the points in parameter space
where the NEM has been measured; cf. Sec. VI B. The distribution
of the relative difference between calculated and measured values is
shown in the lower graph.
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FIG. 7. Second harmonic DRAM with �=90°. The upper graph
is a contour plot of the NEM as a function of PL and �1 /2
. The
NEM values were calculated using the method developed in Sec.
VI A. The cross indicates the position where the NEM is minimum
�see Table II�. The contour lines start at 40 fT/�Hz and are spaced
by 10 fT/�Hz. The dots indicate the points in parameter space
where the NEM has been measured; cf. Sec. VI B. The distribution
of the relative difference between calculated and measured values is
shown in the lower graph.
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�i.e., poor sensitivity�. There, the NEM goes to infinity due to
the onset of the narrow spectral feature �discussed in detail in
�3�� appearing on the dispersive component of the resonance
spectra, cf. Fig. 3�a�, reducing the slope to zero.

B. Verification of the method

The apparatus described in Sec. III was used to measure
the on-resonance slope of the dispersive magnetic resonance
signal. Then, that slope was inserted in Eq. �10� to determine
the experimental value of the intrinsic NEM. We repeated the
measurement on a 18�14 grid of �1 and PL values for the
first harmonic DRAM and a 9�15 value grid for the second
harmonic DRAM. These measured points are shown as dots
in the upper graphs of Figs. 6 and 7. For all measured points,
the difference between the NEM predicted from the extended
model and the measured value has been determined, and the
distribution of the relative difference is plotted in the lower
graph of Fig. 6 for the first harmonic DRAM, and in the
lower graph of Fig. 7 for the second harmonic DRAM.
Within the experimental uncertainty, there are no significant
differences between the measurements and the predictions.

The experimental optimum operating points, where the
measured NEM is minimized, was found, and the results are
shown in Table II. Note that the optimal laser power is nearly
the same for both first and second harmonic DRAMs. The
Rabi frequency required to optimize the 2� NEM is more
than twice that of the 1� NEM. The minimum NEM is
slightly lower for the second harmonic signal. Table II com-
pares the measured values with the predicted values calcu-
lated using the extended DRAM model. The agreement is
very good, in particular for the NEM values. This means that
given the relaxation rates and saturation powers, the opti-
mum point can be predicted with precision of 5% using the
extended DRAM model.

C. Advantage of the method

The automated experimental determination of the opti-
mum operating point of a DRAM, for a given temperature,
can take several tens of hours. Indeed, that was the case for
the NEM measurements over the grid of PL and �1 values
presented above.

By contrast, to find the optimum operating point based on
the prediction of the extended DRAM model parameters re-
quires only measurements as a function of PL, since the �1
dependence of the magnetic resonance spectra is perfectly
described by the DRAM model presented in �3�. Thus the
measurement time needed for finding the optimum can be
reduced by one order of magnitude when using the above
method to predict the optimum operating point instead of
exploring the whole bidimensional parameter space. This is
particularly useful for making a rapid characterization of the
quality of coated Cs cells and when studying the optimum
point as a function of temperature, the topic of the next sec-
tion.

VII. DRAM OPTIMUM POINT EVOLUTION WITH
TEMPERATURE

The atomic vapor density and atom velocity distribution
�and hence the interatomic and wall collision rates�, as well

as the relaxation probability during individual wall colli-
sions, depend on temperature. The alignment relaxation
rates, �0, �1, and �2, depend in a nontrivial way on all those
parameters because of three main contributing processes,
namely collisional spin-exchange, wall collisions, and the
reservoir effect �12–14�. Temperature thus has an important
influence on the magnetometric sensitivity. Unfortunately,
the influence is hard to model and so is worth measuring.

The method developed in Sec. VI—predicting the opti-
mum point from a measurement of the extended DRAM
model parameters �cf. Sec. V�—was used to investigate the
temperature dependence of the optimum DRAM operating
point. Multiple measurements of the DRAM parameters
were made for temperatures between 20 °C and 40 °C. As
an illustration, the evolution of relaxation rates with tempera-
ture is shown in Fig. 8 where two measurements, at 25 °C
and 38 °C, are presented. Even though the temperature evo-
lution of the relaxation rates is nontrivial, the quadratic
model of Eqs. �12a�–�12c� fits well to the experimental data
and gives access to the relaxation rates �00, �10, and �20 at
zero light power. These parameters have been measured and
their temperature behavior is presented in Fig. 9. They all
increase with temperature, and this is mainly related to the
increase of the atomic vapor density. During setup, we ob-
served that the difference between �10 and �20 can be de-
creased by improving the magnetic field homogeneity, and
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FIG. 8. Relaxation rates as a function of laser power, measured
at two different temperatures. The empty symbols ��, �, �� rep-
resent �0 ,�1 ,�2 measured at T=25 °C. The filled symbols ��, �,
�� represent �0 ,�1 ,�2 measured at T=38 °C. The solid and
dashed lines are a fit of the extended DRAM model �Eqs.
�12a�–�12c�� to the experimental data. �a� First harmonic DRAM
with �=25.5°. �b� Second harmonic DRAM with �=90°.
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further tests confirmed that the difference between �10 and
�20 increases with the square of the magnetic field inhomo-
geneity �15,16�. Moreover, the residual difference observed
in our experiment is compatible with an estimation of the
residual magnetic field inhomogeneity. This leads us to con-
clude that, in principle, the two transverse relaxation rates
�10 and �20 should be equal in a perfectly homogeneous
magnetic field. In Fig. 9, the solid lines are fits to the experi-
mental data of the relaxation model given by

�i0 = n�ivrel + AvmeEa/kT + Bvm + Cvm
−1. �16�

On the right-hand side, the first term is the contribution due
to collisional spin-exchange: It is proportional to the vapor
density n�T�, to the collisional disalignment cross section �i,
and to the atoms’ mean relative velocity vrel�T�
=�16kT / �
M�, where M is the 133Cs mass. The second term
is the contribution due to wall collisions: It is proportional to
the rate of wall collisions, hence to the atoms’ mean velocity
vm�T�=�8kT / �
M�, and to the wall sticking time �s

��0eEa/kT, where �0�10−12 s, Ea is the adsorption energy,
and k is the Boltzmann constant. The third term is the con-
tribution from the reservoir effect, and it is proportional to
the rate of wall collisions and therefore to vm. Finally, the
last term is the contribution due to magnetic field inhomoge-
neities, which is proportional to vm

−1 due to motional narrow-
ing �16�.

The vapor density n�T� is calculated from the cesium va-
por pressure given in �17�: It is highly temperature depen-
dent. As a consequence, over the range of temperatures in-
vestigated in this work, the collisional spin-exchange term
represents the main contribution to the temperature behavior
of relaxation rates, and all other terms are approximately
linear. Therefore, the fit is able to determine the Cs-Cs col-
lisions disalignment cross sections �i, but cannot distinguish
the contributions from the other terms with reasonable un-
certainties. In principle, this can be improved by increasing
the temperature range of the measurements and would lead
to a powerful method for the investigation of relaxation
mechanisms. However, at present, experimental setup cannot
reach the necessary temperatures and so, since it is beyond
the scope of the present paper, such investigations will be the
subject of future work. The values of �i extracted from the
fits are summarized in Table III. These values have to be

TABLE III. Collisional disalignment cross sections �i obtained
from the fit of Eq. �16� to the experimental data presented in Fig. 9.
The last column gives the average of the values obtained for the 1�
and 2� DRAMs. Errors are statistical only.

Parameter 1� DRAM 2� DRAM Average

�0 �cm2� 0.5�6��10−14 1.2�6��10−14 0.9�4��10−14

�1 �cm2� 1.5�3��10−14 2.1�9��10−14 1.6�3��10−14

�2 �cm2� 1.5�3��10−14 1.7�5��10−14 1.6�3��10−14
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FIG. 9. Temperature evolution of the relaxation rates extrapo-
lated to zero laser power. The symbols ��, �, �� represent
�00,�10,�20. The solid lines are fits of Eq. �16� to the experimental
data. �a� First harmonic DRAM with �=25.5°. �b� Second harmonic
DRAM with �=90°.
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FIG. 10. Evolution of the optimum NEM as a function of tem-
perature. �a� First harmonic DRAM with �=25.5°. �b� Second har-
monic DRAM with �=90°. These graphs were calculated from the
measurement of the extended DRAM model parameters.
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taken with caution since the density used to infer the cross
sections was taken directly from the Taylor-Langmuir for-
mula �17�, while it is known that the density in paraffin
coated cells may deviate by up to 20% �13� from the ex-
pected thermal equilibrium value. A full exploration of the
systematics arising from density effects, which depend on
the cell used as well as parameters such as the applied light
power and its resulting induced desorption �18�, was beyond
the scope of this work.

The extended DRAM model parameter measurements
were used to calculate the evolution of the optimum operat-
ing point of the DRAM �cf. Sec. VI A�. The results are pre-
sented, as a function of temperature, in Fig. 10 for both the
first and second harmonic DRAMs. A quadratic polynomial
was fitted to the NEM data in order to determine the tem-
perature of minimum NEM. The experimental parameters
characterizing these optimum points are summarized in the
first column of Table IV, where we observe that the second
harmonic DRAM is slightly more sensitive than the first har-
monic DRAM.

VIII. DISCUSSION

The majority of the work presented herein has been per-
formed using a single evacuated Cs cell �cell 1 in Table IV�.
We applied the temperature NEM optimization procedure de-
scribed in Sec. VII to two additional paraffin coated cesium
cells and the resulting optimum parameters are presented in
Table IV. The intrinsic NEM for the second harmonic
DRAM is always smaller than for the first harmonic DRAM,
and the lowest NEM value of 27.4 fT/�Hz was obtained
using the cell produced by our group �cell 1�. We observe
that the NEM values scale with the inverse of the volume of
the cell and not with the volume to surface ratio. However,
since the three cells do not have the same coating, this rela-
tion could be accidental.

Under identical conditions, the line shapes of the second
harmonic DRAM signal are narrower than those of the
DROM which, in principle, should lead to an improvement
of the sensitivity �3�. Previous work by our group found an
intrinsic sensitivity of 10 fT/�Hz for an optimized DROM
using a 70 mm diameter Cs vapor cell in the so-called Mx

configuration �19�. However, the experimental setup used in
the past was very different �different cell size, offset field
homogeneity, and magnetic shielding� and, in particular, the
difference in cell dimensions disfavors the DRAM in this
comparison. Therefore, a detailed comparative study is
needed before drawing firm conclusions.

IX. CONCLUSION

In conclusion, we have presented an experimental study
of the intrinsic magnetometric sensitivity of the double-
resonance alignment magnetometer, showing that an empiri-
cal extension of the DRAM model can be used to describe
the magnetic resonance spectra over a range of experimental
parameters sufficient for optimizing the magnetometer. A
model has been developed to predict the optimum operating
point of the magnetometer, i.e., the value of experimental
parameters for which the magnetometric sensitivity is maxi-
mum. The method was verified by comparing its results to a
direct measurement of the optimum operating point. In con-
trast to the time consuming direct optimization involving
many hours of testing in a two parameter space, our method
decreases the time required to find the optimum operation
point to half an hour. Finally, we used this method to inves-
tigate the evolution of the optimum operating point of the
DRAM with temperature, showing that the magnetometric
sensitivity reaches an optimum of 27.4 fT/�Hz for a

TABLE IV. Results of the temperature NEM optimization procedure �as described in Sec. VII� applied to
three different paraffin coated cells. Cell 1 was produced by our group; it is spherical with a 28 mm diameter.
Cells 2 and 3 were purchased from a Russian company.

Cell 1 Cell 2 Cell 3

Shape Spherical Cubic Cylindrical

Volume V 11.5 cm3 8.0 cm3 4.6 cm3

Surface S 24.6 cm2 24.0 cm2 15.3 cm2

V /S 0.467 cm 0.333 cm 0.301 cm

First harmonic DRAM

Optimum T 31.2 °C 35.8 °C 35.5 °C

Optimum PL 6.2 �W 12.1 �W 5.2 �W

Optimum �1 /2
 2.9 Hz 5.5 Hz 4.8 Hz

Intrinsic NEM 28.6 fT/�Hz 45.7 fT/�Hz 74.7 fT/�Hz

Second harmonic DRAM

Optimum T 33.7 °C 36.2 °C 37.6 °C

Optimum PL 6.0 �W 8.9 �W 4.7 �W

Optimum �1 /2
 10.5 Hz 14.1 Hz 15.0 Hz

Intrinsic NEM 27.4 fT/�Hz 39.3 fT/�Hz 62.2 fT/�Hz
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temperature of 33.7 °C. Both the first harmonic and the sec-
ond harmonic realizations of the magnetometer were ex-
plored and compared. The temperature dependence of the
relaxation rates yielded measurements of the Cs-Cs colli-
sional disalignment cross sections of the tensor alignment,
and the method promises to be useful in the continued study
of the relaxation processes over broader temperature ranges.
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