169 research outputs found

    Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle

    Get PDF
    The ratio of leaf‐internal (ci) to ambient (ca) partial pressure of CO2, defined here as χ, is an index of adjustments in both leaf stomatal conductance and photosynthetic rate to environmental conditions. Measurements and proxies of this ratio can be used to constrain vegetation models uncertainties for predicting terrestrial carbon uptake and water use. We test a theory based on the least‐cost optimality hypothesis for modelling historical changes in χ over the 1951‐2014 period, across different tree species and environmental conditions, as reconstructed from stable carbon isotopic measurements across a global network of 103 absolutely‐dated tree‐ring chronologies. The theory predicts optimal χ as a function of air temperature, vapour pressure deficit, ca and atmospheric pressure. The theoretical model predicts 39% of the variance in χ values across sites and years, but underestimates the inter‐site variability in the reconstructed χ trends, resulting in only 8% of the variance in χ trends across years explained by the model. Overall, our results support theoretical predictions that variations in χ are tightly regulated by the four environmental drivers. They also suggest that explicitly accounting for the effects of plant‐available soil water and other site‐specific characteristics might improve the predictions

    Galileon Higgs vortices

    Get PDF
    Vortex solutions are topologically stable field configurations that can play an important role in condensed matter, field theory, and cosmology. We investigate vortex configuration in a 2+1 dimensional Abelian Higgs theory supplemented by higher order derivative self-interactions, related with Galileons. Our vortex solutions have features that make them qualitatively different from well-known Abrikosov-Nielsen-Olesen configurations, since the derivative interactions turn on gauge invariant field profiles that break axial symmetry. By promoting the system to a 3+1 dimensional string configuration, we study its gravitational backreaction. Our results are all derived within a specific, analytically manageable system, and might offer indications for understanding Galileonic interactions and screening mechanisms around configurations that are not spherically symmetric, but only at most cylindrically symmetric.Comment: 26 pages, 8 figure

    Effect of Cr(V) on reproductive organ morphology and sperm parameters: An experimental study in mice

    Get PDF
    BACKGROUND: Cr(V) species are formed during the intracellular reduction of Cr(VI), a ubiquitous environmental pollutant. In this study, the acute toxicity of a physiologically stable Cr(V) compound, [Cr(V)-BT](2- )(BT = bis(hydroxyethyl)aminotris(hydroxymethyl)methane) was investigated in the male reproductive system of sexually mature 60-day-old male ICR-CD1 mice. METHODS: Eight-week-old animals were subcutaneously injected daily with a dose of ca 8 ÎŒmol of Cr/mouse, during 5 days. The control group was injected with 0.5 mL of BT buffer. Testis and epididymis morphology was evaluated using light and transmission electron microscopy. Epididymal sperm counts, motility and acrosome integrity were also assayed using standard methods. RESULTS: Seminiferous epithelium abnormalities were detected in the Cr(V)-BT experimental group, including intraepithelial vacuolation, and remarkable degeneration of Sertoli cells, spermatocytes and spermatids. The premature release of germ cells into the tubular lumen was also evident. Histological evaluation of epididymal compartments revealed apparently normal features. However, the epididymal epithelium presented vacuolation. [Cr(V)-BT](2- )induced a reduction in sperm acrosome integrity. However, sperm motility and density were not significantly affected. CONCLUSION: This in vivo study using a Cr(V) compound, provides evidence for the potential reproductive hazards caused on male reproductive system by species containing chromium in intermediate oxidation states

    Gender differences in self reported long term outcomes following moderate to severe traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of research on health outcomes after a traumatic brain injury is focused on male participants. Information examining gender differences in health outcomes post traumatic brain injury is limited. The purpose of this study was to investigate gender differences in symptoms reported after a traumatic brain injury and to examine the degree to which these symptoms are problematic in daily functioning.</p> <p>Methods</p> <p>This is a secondary data analysis of a retrospective cohort study of 306 individuals who sustained a moderate to severe traumatic brain injury 8 to 24 years ago. Data were collected using the Problem Checklist (PCL) from the Head Injury Family Interview (HIFI). Using Bonferroni correction, group differences between women and men were explored using Chi-square and Wilcoxon analysis.</p> <p>Results</p> <p>Chi-square analysis by gender revealed that significantly more men reported difficulty setting realistic goals and restlessness whereas significantly more women reported headaches, dizziness and loss of confidence. Wilcoxon analysis by gender revealed that men reported sensitivity to noise and sleep disturbances as significantly more problematic than women, whereas for women, lack of initiative and needing supervision were significantly more problematic in daily functioning.</p> <p>Conclusion</p> <p>This study provides insight into gender differences on outcomes after traumatic brain injury. There are significant differences between problems reported by men compared to women. This insight may facilitate health service planners and clinicians when developing programs for individuals with brain injury.</p

    Unified Homogenization Theory for Magnetoinductive and Electromagnetic Waves in Split Ring Metamaterials

    Full text link
    A unified homogenization procedure for split ring metamaterials taking into account time and spatial dispersion is introduced. The procedure is based on two coupled systems of equations. The first one comes from an approximation of the metamaterial as a cubic arrangement of coupled LC circuits, giving the relation between currents and local magnetic field. The second equation comes from macroscopic Maxwell equations, and gives the relation between the macroscopic magnetic field and the average magnetization of the metamaterial. It is shown that electromagnetic and magnetoinductive waves propagating in the metamaterial are obtained from this analysis. Therefore, the proposed time and spatially dispersive permeability accounts for the characterization of the complete spectrum of waves of the metamaterial. Finally, it is shown that the proposed theory is in good quantitative and qualitative agreement with full wave simulations.Comment: 4 pages, 3 figure

    Evaluation of an educational technology regarding clinical evaluation of preterm newborns

    Get PDF
    AIM: To evaluate, from the students' point of view, educational software developed as a tool to help teachers and students in neonatal nursing. METHOD: The study evaluates the contents and simulations addressed in the software. A total of 57 undergraduate nursing students affiliated with five Brazilian public colleges participated. RESULTS: The general assessment of the software was highly satisfactory: 82.4% of the sample characterized the software as quite effective as a teaching tool. Most components were assessed as good or very good. The participants' suggestions and comments are being considered in the improvement and adaptation of the new software version. CONCLUSION: The results show that the product is adequate for use in neonatal nursing courses and nursing training on the physical examination techniques and semiology of preterm newborns, falling within the pedagogical framework of active methods

    Understanding the retinal basis of vision across species

    Get PDF
    The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision
    • 

    corecore