18 research outputs found

    Re-evaluating metamorphism in the southern Natal Province, South Africa

    Get PDF
    The metamorphic conditions of the Natal Metamorphic Province (NMP) have been the focus of previous studies to assist with Rodinia reconstructions but there are limited constraints on the age of metamorphism. We use a combination of modern techniques to provide new constraints on the conditions and timing of metamorphism in the two southernmost terranes: the Mzumbe and Margate. Metamorphism reached granulite facies, 780–834°C at 3.9–7.8 kbar in the Mzumbe Terrane and 850–892°C at 5.7–6.1 kbar in the Margate Terrane. The new pressure and temperature constraints are supportive of isobaric cooling in the Margate Terrane as previously proposed. Peak metamorphism of the two terranes is shown to have occurred c. 40 myr apart, which contrasts strongly with previous assumptions of coeval metamorphism. While the age of peak metamorphism of the Margate Terrane (1032.7 ± 4.7 Ma) coincides with the tectonism and magmatism associated with the emplacement of the Oribi Gorge Suite (c. 1050–1030 Ma), the age of metamorphism of the Mzumbe Terrane (987.4 ± 8.1 Ma) occurs c. 30–40 myr after tectonism is previously thought to have finished. We propose that models of advective cooling during transcurrent shearing can explain the metamorphic conditions and timing of the NMP

    Current applications using key mineral phases in igneous and metamorphic geology: perspectives for the future

    Get PDF
    The study of magmatic and metamorphic processes is challenged by geological complexities like geochemical variations, geochronological uncertainties and the presence/absence of fluids and/or melts. However, by integrating petrographic and microstructural studies with geochronology, geochemistry and phase equilibrium diagram investigations of different key mineral phases, it is possible to reconstruct insightful pressure–temperature–deformation–time histories. Using multiple geochronometers in a rock can provide a detailed temporal account of its evolution, as these geological clocks have different closure temperatures. Given the continuous improvement of existing and new in situ analytical techniques, this contribution provides an overview of frequently utilized petrochronometers such as garnet, zircon, titanite, allanite, rutile, monazite/xenotime and apatite, by describing the geological record that each mineral can retain and explaining how to retrieve this information. These key minerals were chosen as they provide reliable age information in a variety of rock types and, when coupled with their trace element (TE) composition, form powerful tools to investigate crustal processes at different scales. This review recommends best applications for each petrochronometer, highlights limitations to be aware of and discusses future perspectives. Finally, this contribution underscores the importance of integrating information retrieved by multi-petrochronometer studies to gain an in-depth understanding of complex thermal and deformation crustal processes

    Water availability controls crustal melting temperatures

    No full text
    Although the capacity for water to lower the solidus during crustal melting is well recognised, a modern consensus is that most granitic magmas are generated under fluid-absent melting conditions at temperatures ≥850 °C, and that water has little influence on crustal melting temperatures. By contrast, we show that granite magmas produced in different tectonic settings equilibrated in the crust at significantly different temperatures, ranging between 700 and 1000 °C, depending on water availability during melting. On a molecular scale, the process that lowers the solidus is similar to hydroxylation, i.e. the depolymerization of the aluminosilicate framework melt by complexing of OH− ions with the melt network formers, Si4+ and Al3+. On a larger scale, the process is “water fluxing”, which is consistent with the growing realisation that many granitic magma reservoirs form under protracted, cool-storage conditions, and consistent with the typically low (100–200 ppm) Zr content (hence low zircon saturation temperatures) of granitic magmas. Global compilations of common igneous and sedimentary rocks also show that Zr contents are consistently in the range of 100–200 ppm, indicating that average Zr contents do not change significantly during crustal differentiation. Such low average contents are most easily reconciled with models of low-T silicic melt generation and entrainment of refractory or antecrystic zircon in the magma. Low-K, I-type (Cordilleran) granitic magmas are cooler and much more voluminous than A-type magmas because they are hydrous, although transiently heated by mafic magma infusions. In turn, water availability is tectonically controlled, occurring in most suprasubduction (SSZ) environments where mantle-derived water drives melting of orogenic crust already elevated in heat flux (>75 mWm−2), typical of upper amphibolite facies conditions. However, within intraplate environments, where melting proceeds by high-T, hydrate-breakdown melting, crustal temperatures are not buffered during water fluxing and rise to granulite facies and ultrahigh temperature (UHT) conditions, particularly for refractory protoliths, producing ferroan, alkalic A-type granites and charnockites in deep crustal hot zones (DCHZ). The combination of tectonic setting, contrasting source rocks, and variation in water availability, controls the compositional diversity of granitic magmas

    Probing the history of ultra-high temperature metamorphism through rare earth element diffusion in zircon

    Get PDF
    OnlinePubl.The extent to which solid-state volume diffusion modifies rare earth element (REE) abundances in accessory minerals during high-temperature metamorphism governs our ability to link recorded trace-element compositions to particular thermal events. We model diffusion of REE in zircon under different temperature–time conditions and show that, for both short-lived (e.g. 1100°C for 1–5 Ma) and more prolonged (e.g. 1050°C for 10–30 Ma or 1000°C for 200 Ma) episodes of ultra-high-temperature (UHT) metamorphism, REE diffusion in igneous zircon is sufficiently rapid for REE in a ~50-μm grain to equilibrate with the new metamorphic mineral assemblage of the host rock. By contrast, unless diffusion is accelerated by recrystallization, the presence of fluids or other processes at temperatures below 900°C zircon will largely retain its original pre-metamorphic REE abundance pattern, even when the thermal event is long lived (≥100 Ma). Where volume diffusion is dominant, for instance, in the absence of a fluid phase, the sensitivity of REE mobility to temperature can help constrain the temperature–time path of high-grade metamorphic rocks. Modelling of well-characterized natural samples from the regional-scale aureole surrounding the Rogaland Igneous Complex (RIC) in SW Norway shows that variations in REE concentration patterns in zircon indicate a T–t evolution that is consistent with independent P–T–t estimates for regional metamorphism based on phase equilibrium modelling (850–950°C at 7–8 kbar for ~100 Ma). Greater modification of REE abundance patterns in zircons within 2 km of the RIC contact, however, indicates that UHT conditions persisted for ~150 Ma close to the intrusion, with a temperature of ~1100°C for 1–5 Ma at the RIC contact. Thermal modelling suggests that the inferred T–t histories of samples from different distances from the RIC contact are best explained if the complex was emplaced incrementally over 1–5 Ma.Eleanore Blereau, Chris Clark, Peter D. Kinny, Eleanor Sansom, Richard J. M. Taylor, Martin Han

    Two-stage hybrid origin of Lachlan S-type magmas: A re-appraisal using isotopic microanalysis of lithic inclusion minerals

    No full text
    Microanalysis of accessory minerals was carried out to elucidate the controversial origin of the classical, ~430 Ma (Silurian) S-type granites and related lithic inclusions from the eastern Lachlan Orogen, southeastern Australia. Inclusions were separated into igneous-derived, mafic microgranular enclaves (MME) and metasedimentary inclusions. Apatite ɛNd(t), and monazite ɛNd(t) isotopic values for granite host and inclusions cover a similar range (~ −4 to −13), but their ɛNd(t) peaks are distinct. Whereas similar unimodal peaks exist for both minerals in the granites, suggesting widespread equilibration during hybridisation of two magmatic components in the host S-type magma, skewed or bimodal peaks characterize the MME and metasedimentary inclusions, indicating their different petrogenetic histories. The isotopic data suggests two endmembers: a mature metasedimentary source with ɛNd(t) of −12, represented by ubiquitous Ordovician quartzose turbidites, and a more radiogenic component represented by a − 5 ɛNd(t) peak in the MME. Zircon ɛ(Hf) values from −3 to −10, and δ18O values from 7.5‰ to 10.5‰, reflect variable incorporation (40–80%) of metasedimentary material with a mantle-like endmember. Temperature estimates for magmatic equilibration are 750-800 °C, though evidence exists for transient higher temperatures in some inclusions. Phase equilibria modelling using the average composition of the Ordovician turbidites as a potential source-rock suggests that melt compositions were uniform, silicic (75–76 wt% SiO2) and peraluminous (ASI = 1.13–1.22), for a wide range of temperatures and water contents. However, neither the modelled residual rock (restite) compositions, nor the analysed metasedimentary inclusions, lie along the Lachlan S-type compositional array. Rather, the compositional array projects to a mafic endmember defined by the MME, suggesting widespread, efficient hybridization with weakly peraluminous, andesitic magmas. Source mixing models (without significant mantle-derived magma input) are rejected on petrological and geological criteria. The andesitic MME-type magmas were hybridized in the lower crust, probably during mafic magma underplating, before incorporation into large, cool, midcrustal S-type magma reservoirs, and the observed MME represent the final mingled stage of that interaction during emplacement at shallow crustal levels. Using a modern example from the Andes, a model is presented of 2-stage hybridization, initially near the Moho, then in the midcrust as hot, hybrid andesitic magmas repeatedly infused a resident, giant, low-T, S-type magma body. Late-stage injection of the MME generated localized inclusion swarms, as at Cowra and Deddick, and promoted eruption of vast S-type ignimbrite sheets during a major magmatic flare-up in the Lachlan orogen

    Constraints on the timing and conditions of high-grade metamorphism, charnockite formation and fluid--rock interaction in the Trivandrum Block, southern India

    No full text
    Incipient charnockites have been widely used as evidence for the infiltration of CO2-rich fluids driving dehydration of the lower crust. Rocks exposed at Kakkod quarry in the Trivandrum Block of southern India allow for a thorough investigation of the metamorphic evolution by preserving not only orthopyroxene-bearing charnockite patches in a host garnet–biotite felsic gneiss, but also layers of garnet–sillimanite metapelite gneiss. Thermodynamic phase equilibria modelling of all three bulk compositions indicates consistent peak-metamorphic conditions of 830–925 °C and 6–9 kbar with retrograde evolution involving suprasolidus decompression at high temperature. These models suggest that orthopyroxene was most likely stabilized close to the metamorphic peak as a result of small compositional heterogeneities in the host garnet–biotite gneiss. There is insufficient evidence to determine whether the heterogeneities were inherited from the protolith or introduced during syn-metamorphic fluid flow. U–Pb geochronology of monazite and zircon from all three rock types constrains the peak of metamorphism and orthopyroxene growth to have occurred between the onset of high-grade metamorphism at c. 590 Ma and the onset of melt crystallization at c. 540 Ma. The majority of metamorphic zircon growth occurred during protracted melt crystallization between c. 540 and 510 Ma. Melt crystallization was followed by the influx of aqueous, alkali-rich fluids likely derived from melts crystallizing at depth. This late fluid flow led to retrogression of orthopyroxene, the observed outcrop pattern and to the textural and isotopic modification of monazite grains at c. 525–490 Ma

    A window into an ancient backarc? The magmatic and metamorphic history of the Fraser Zone, Western Australia

    No full text
    © 2019 Elsevier B.V. The Fraser Zone is a major lithotectonic domain of the Albany–Fraser Orogen, Western Australia, which records Proterozoic modification of the margin of the Archean Yilgarn Craton. The Fraser Zone is volumetrically dominated by gabbroic rocks and their metamorphosed equivalents. However, little is known of the pressure–temperature–time (P–T–t) history or the geodynamic setting of these mafic rocks. When considered within the context of existing P–T constraints from spatially-associated metapelitic rocks, modelled phase equilibria suggest that both the unmetamorphosed gabbros and the granulite facies metagabbroic rocks equilibrated at 950–900 °C and ~7 kbar, interpreted to record the conditions of magmatic crystallisation and peak metamorphism, respectively. These data support the view that mafic magmatism was the thermal driver for high-T, low-P granulite facies metamorphism. The absence of garnet from the metagabbroic rocks, and the lack of evidence for its former presence (i.e., as inclusions), argues that, during metamorphism, the rocks never reached pressures above those they attained at the thermal peak. Coronæ of zircon around ilmenite in the magmatic rocks reflect a local supply of Zr as it exsolved from ilmenite, permitting earlier growth of zircon around ilmenite than elsewhere during melt crystallisation. U–Pb dating of coronal zircon (1315 ± 5 Ma) and a discrete magmatic zircon grain isolated from ilmenite (1296 ± 5 Ma) constrain the duration of magmatic crystallisation between ca. 10 and 30 Ma. Zircon in a metamorphosed gabbro constrains the timing of granulite facies metamorphism to 1293 ± 6 Ma, synchronous with final crystallisation of the mafic magmas. Based on the implied metamorphic evolution of these rocks and that of the surrounding supracrustal package, along with existing isotopic and geochemical data, we suggest the Fraser Zone probably formed in a backarc, or perhaps an intracontinental rift setting, and records successive emplacement of gabbroic rocks into a thick, sediment-filled basin. The older gabbroic rocks record hydration and reaction with the devolatilising and/or partially molten metasedimentary rocks into which they were emplaced. Subsequent granulite facies metamorphism of these hydrated rocks was driven by the heat provided by the intrusion of younger mafic magmas

    Reassessing zircon-monazite thermometry with thermodynamic modelling: insights from the Georgetown igneous complex, NE Australia

    No full text
    Accessory mineral thermometry and thermodynamic modelling are fundamental tools for constraining petrogenetic models of granite magmatism. U–Pb geochronology on zircon and monazite from S-type granites emplaced within a semi-continuous, whole-crust section in the Georgetown Inlier (GTI), NE Australia, indicates synchronous crystallisation at 1550 Ma. Zircon saturation temperature (Tzr) and titanium-in-zircon thermometry (T(Ti–zr)) estimate magma temperatures of ~ 795 ± 41 °C (Tzr) and ~ 845 ± 46 °C (T(Ti-zr)) in the deep crust, ~ 735 ± 30 °C (Tzr) and ~ 785 ± 30 °C (T(Ti-zr)) in the middle crust, and ~ 796 ± 45 °C (Tzr) and ~ 850 ± 40 °C (T(Ti-zr)) in the upper crust. The differing averages reflect ambient temperature conditions (Tzr) within the magma chamber, whereas the higher T(Ti-zr) values represent peak conditions of hotter melt injections. Assuming thermal equilibrium through the crust and adiabatic ascent, shallower magmas contained 4 wt% H2O, whereas deeper melts contained 7 wt% H2O. Using these H2O contents, monazite saturation temperature (Tmz) estimates agree with Tzr values. Thermodynamic modelling indicates that plagioclase, garnet and biotite were restitic phases, and that compositional variation in the GTI suites resulted from entrainment of these minerals in silicic (74–76 wt% SiO2) melts. At inferred emplacement P–T conditions of 5 kbar and 730 °C, additional H2O is required to produce sufficient melt with compositions similar to the GTI granites. Drier and hotter magmas required additional heat to raise adiabatically to upper-crustal levels. S-type granites are low-T mushes of melt and residual phases that stall and equilibrate in the middle crust, suggesting that discussions on the unreliability of zircon-based thermometers should be modulated.Centre of Excellence for Core to Crust Fluid Systems, Australian Research Council http://dx.doi.org/10.13039/100012537Ruhr-Universität Bochum (1007

    Reassessing zircon-monazite thermometry with thermodynamic modelling: insights from the Georgetown igneous complex, NE Australia

    Get PDF
    Accessory mineral thermometry and thermodynamic modelling are fundamental tools for constraining petrogenetic models of granite magmatism. U–Pb geochronology on zircon and monazite from S-type granites emplaced within a semi-continuous, whole-crust section in the Georgetown Inlier (GTI), NE Australia, indicates synchronous crystallisation at 1550 Ma. Zircon saturation temperature (Tzr) and titanium-in-zircon thermometry (T(Ti–zr)) estimate magma temperatures of ~ 795 ± 41 °C (Tzr) and ~ 845 ± 46 °C (T(Ti-zr)) in the deep crust, ~ 735 ± 30 °C (Tzr) and ~ 785 ± 30 °C (T(Ti-zr)) in the middle crust, and ~ 796 ± 45 °C (Tzr) and ~ 850 ± 40 °C (T(Ti-zr)) in the upper crust. The differing averages reflect ambient temperature conditions (Tzr) within the magma chamber, whereas the higher T(Ti-zr) values represent peak conditions of hotter melt injections. Assuming thermal equilibrium through the crust and adiabatic ascent, shallower magmas contained 4 wt% H2O, whereas deeper melts contained 7 wt% H2O. Using these H2O contents, monazite saturation temperature (Tmz) estimates agree with Tzr values. Thermodynamic modelling indicates that plagioclase, garnet and biotite were restitic phases, and that compositional variation in the GTI suites resulted from entrainment of these minerals in silicic (74–76 wt% SiO2) melts. At inferred emplacement P–T conditions of 5 kbar and 730 °C, additional H2O is required to produce sufficient melt with compositions similar to the GTI granites. Drier and hotter magmas required additional heat to raise adiabatically to upper-crustal levels. S-type granites are low-T mushes of melt and residual phases that stall and equilibrate in the middle crust, suggesting that discussions on the unreliability of zircon-based thermometers should be modulated
    corecore