71 research outputs found
MOLECULAR MECHANISMS ALTERING SKELETAL DEVELOPMENT AND HOMEOSTASIS IN TS65NDN DOWN SYNDROME MICE
poster abstractDown syndrome (DS) is caused by three copies of human chromosome 21 (HSA21) and results in abnormal craniofacial and appendicular bone phe-notypes. The Ts65Dn mouse model of DS contains three copies of nearly half of the genes found on HSA21, and exhibits craniofacial skeletal phenotypes similar to those observed in humans with DS. We recently demonstrated ab-normalities in the development and homeostasis of the appendicular skele-ton of Ts65Dn mice. Femurs from trisomic mice exhibit alterations in trabec-ular bone architecture and overall bone strength. Furthermore, bone for-mation rates were found to be significantly reduced, suggesting trisomy im-pacts bone development and maintenance in Ts65Dn mice, and by extension humans with DS. DYRK1A is triplicated in both humans with DS and Ts65Dn mice and its protein acts as a kinase critical during development. Dyrk1A negatively regulates the nuclear localization and activation of Nfatc, a tran-scription factor critical to signaling pathways associated with cell proliferation and bone development, and is overexpressed in the E9.5 Ts65Dn mandible precursor. We hypothesize that the previously documented Ts65Dn bone phenotype originates during embryonic development, and the presence of an extra copy of Dyrk1a contributes to the abnormal bone phenotype observed in Ts65Dn mice and humans with DS. To test our first hypothesis, analysis of the cartilage template and early bone precursor is being conducted on the femurs from embryonic day 17.5 trisomic and euploid embryos. To implicate the involvement of Dyrk1a in the DS bone phenotype, Ts65Dn mice are be-ing treated with a known Dyrk1a inhibitor, EGCG, to determine if correcting the functional expression of Dyrk1a impacts the development of the Ts65Dn postnatal bone phenotype. Understanding the molecular mechanisms under-lying DS bone phenotypes may help improve the quality of life for individuals with DS and provide viable options for the treatment of osteoporosis
EMBRYONIC BONE DEVELOPMENT AND NFAT EXPRESSION IN THE TS65DN MOUSE MODEL FOR DOWN SYNDROME
poster abstractDown syndrome (DS) is a common genetic disorder that occurs in ap-proximately 1 out of every 750 live births. DS phenotypes include cognitive deficits, altered craniofacial features, muscle hypotonia, heart defects, and abnormal bone structure. The Ts65Dn mouse model is the most common or-ganismal model used to study DS phenotypes. This model exhibits a number of phenotypic traits comparable to those of humans with DS, including bone anomalies. Past studies have shown that Ts65Dn mice exhibit weaker tra-becular bone due to less trabeculae. They have also been shown to have less bone mineral density and bone mineral content at 6 weeks of age when compared to their euploid counterparts, with the severity of these defects lessening by 16 weeks. No studies of bone development have yet decisively identified the origin of these defects. We hypothesized that abnormal endochondral ossification is responsible for the presence of these deficien-cies in bone mineral content and bone mineral density. Aberrant expression of Nfat has been implicated as the molecular cause of many DS-related phe-notypes, and activity of Nfat can be determined based upon its localization. Specifically, Nfat has been shown to control many aspects of bone develop-ment, which makes it of special interest to this research. To test our hypoth-esis of a bone deficit present during embryonic development of Ts65Dn em-bryos, we are comparing cartilaginous template characteristics, progression of the mineralization front, osteoclast activity, percent bone volume, and Nfat localization in euploid and trisomic mouse femurs at embryonic day 17.5. Our preliminary data show lower percent bone volumes in trisomic fe-murs, suggesting that endochondral ossification in Ts65Dn mice lags behind that of their euploid counterparts. These results indicate that DS bone phe-notypes do indeed originate during embryonic development and create a foundation for future work on their treatment.
Supported by: National Science Foundation GK-12 Fellowship; Jerome Lejeune Foundatio
Rescue of the abnormal skeletal phenotype in Ts65Dn Down syndrome mice using genetic and therapeutic modulation of trisomic Dyrk1a
Trisomy 21 causes skeletal alterations in individuals with Down syndrome (DS), but the causative trisomic gene and a therapeutic approach to rescue these abnormalities are unknown. Individuals with DS display skeletal alterations including reduced bone mineral density, modified bone structure and distinctive facial features. Due to peripheral skeletal anomalies and extended longevity, individuals with DS are increasingly more susceptible to bone fractures. Understanding the genetic and developmental origin of DS skeletal abnormalities would facilitate the development of therapies to rescue these and other deficiencies associated with DS. DYRK1A is found in three copies in individuals with DS and Ts65Dn DS mice and has been hypothesized to be involved in many Trisomy 21 phenotypes including skeletal abnormalities. Return of Dyrk1a copy number to normal levels in Ts65Dn mice rescued the appendicular bone abnormalities, suggesting that appropriate levels of DYRK1A expression are critical for the development and maintenance of the DS appendicular skeleton. Therapy using the DYRK1A inhibitor epigallocatechin-3-gallate improved Ts65Dn skeletal phenotypes. These outcomes suggest that the osteopenic phenotype associated with DS may be rescued postnatally by targeting trisomic Dyrk1a
EGCG from different sources: differential stability and effects on treating bone phenotypes related to Down syndrome
poster abstractDown Syndrome (DS) is a genetic disorder caused by trisomy of human chromosome 21 (Hsa21). DS phenotypes include cognitive impairment, craniofacial abnormalities, low muscle tone, and skeletal deficiencies. The Ts65Dn mouse model exhibits similar phenotypes as found in humans with DS, including deficits in skeletal bone. Over-expression of DYRK1A, a serine-threonine kinase encoded on Hsa21, has been linked to deficiencies in DS bone homeostasis. Epigallocatechin-3-gallate (EGCG), an aromatic polyphenol found in green tea (GT), is a known inhibitor of Dyrk1a activity. Normalization of Dyrk1a activity by EGCG may have the potential to regulate bone homeostasis, by increasing bone mineral density (BMD) and bone strength. We hypothesized that EGCG obtained from different vendors would differ in stability as well as success in ameliorating skeletal deficiencies. EGCG from different sources was subjected to degradation analysis because of its low bioavailability due to strong antioxidative characteristics. We also hypothesized that phosphoric acid would stabilize EGCG and prevent breakdown in an aqueous solution. We performed High Performance Liquid Chromatography–Mass Spectrometry (HPLC-MS) on EGCG from different sources to determine the amount of EGCG degradation in solution. Our analyses showed differential stability in EGCG from different sources or with phosphoric acid. We chose EGCG from three sources to test the hypothesis that these compounds would have differing effects treating bone phenotypes associated with DS. Three-week-old Ts65Dn and control male mice were treated with EGCG for three weeks. At six weeks of age, mice were sacrificed and femurs were extracted. BMD, bone strength, as well as architecture of the femur were assessed. Our results indicate that EGCG from different sources has diverse effects on the correction of bone phenotypes associated with DS. Our work is important to understand how EGCG from different sources may affect DS phenotypes as the EGCG is translated to human use
Evaluation of the Effects of Green Tea Extracts on Bone Homeostasis in the Ts65Dn Down Syndrome Mouse Model
poster abstractDown Syndrome (DS) is a genetic disorder that affects ~1 in 700 live births, caused by trisomy of human
chromosome 21 (Hsa21), and results in cognitive impairment, craniofacial abnormalities, low muscle
tone, and skeletal deficiencies. To study these phenotypes, we utilized the Ts65Dn mouse model, which
contains three copies of approximately half the orthologous found on Hsa21 and exhibits similar
phenotypes as found in humans with DS. Individuals with DS and Ts65Dn mice have deficits in bone
mineral density (BMD), architecture, and bone strength. Over-expression of DYRK1A, a serine-threonine
kinase encoded on Hsa21, has been linked to deficiencies in DS bone homeostasis. Epigallocatechin-3-
gallate (EGCG), an aromatic polyphenol found in high concentrations in green tea, is a known inhibitor of
Dyrk1a activity. Normalization of Dyrk1a activity by EGCG may have the potential to regulate bone
homeostasis and increase BMD and bone strength in individuals with DS. In this study, we hypothesized
that EGCG obtained from different sources would have differential effects in correcting bone deficits
associated with DS. To test our hypothesis, we performed Liquid chromatography–mass
spectrometry (LC-MS) on EGCG and related compounds from different sources. The LC-MS analysis
determined the amount of EGCG and the degradation in our stock solution. Next, we treated three-weekold
Ts65Dn and control male mice with EGCG for three weeks. At six weeks of age, mice were
sacrificed. DXA and micro CT analysis were performed on the femurs and skulls of the mice to assess
trabecular and cortical bone structure and BMD. Our results indicate the ability of EGCG to ameliorate
skeletal deficiencies and compared pure EGCG with EGCG purchased from commercial vendors in
correcting skeletal deficits associated with DS
Abnormal mineralization of the Ts65Dn Down syndrome mouse appendicular skeleton begins during embryonic development in a Dyrk1a-independent manner
The relationship between gene dosage imbalance and phenotypes associated with Trisomy 21, including the etiology of abnormal bone phenotypes linked to Down syndrome (DS), is not well understood. The Ts65Dn mouse model for DS exhibits appendicular skeletal defects during adolescence and adulthood but the developmental and genetic origin of these phenotypes remains unclear. It is hypothesized that the postnatal Ts65Dn skeletal phenotype originates during embryonic development and results from an increased Dyrk1a gene copy number, a gene hypothesized to play a critical role in many DS phenotypes. Ts65Dn embryos exhibit a lower percent bone volume in the E17.5 femur when compared to euploid embryos. Concomitant with gene copy number, qPCR analysis revealed a  ~1.5 fold increase in Dyrk1a transcript levels in the Ts65Dn E17.5 embryonic femur as compared to euploid. Returning Dyrk1a copy number to euploid levels in Ts65Dn, Dyrk1a+/− embryos did not correct the trisomic skeletal phenotype but did return Dyrk1a gene transcript levels to normal. The size and protein expression patterns of the cartilage template during embryonic bone development appear to be unaffected at E14.5 and E17.5 in trisomic embryos. Taken together, these data suggest that the dosage imbalance of genes other than Dyrk1a is involved in the development of the prenatal bone phenotype in Ts65Dn embryos
Influence of prenatal EGCG treatment and Dyrk1a dosage reduction on craniofacial features associated with Down syndrome
Trisomy 21 (Ts21) affects craniofacial precursors in individuals with Down syndrome (DS). The resultant craniofacial features in all individuals with Ts21 may significantly affect breathing, eating and speaking. Using mouse models of DS, we have traced the origin of DS-associated craniofacial abnormalities to deficiencies in neural crest cell (NCC) craniofacial precursors early in development. Hypothetically, three copies of Dyrk1a (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), a trisomic gene found in most humans with DS and mouse models of DS, may significantly affect craniofacial structure. We hypothesized that we could improve DS-related craniofacial abnormalities in mouse models using a Dyrk1a inhibitor or by normalizing Dyrk1a gene dosage. In vitro and in vivo treatment with Epigallocatechin-3-gallate (EGCG), a Dyrk1a inhibitor, modulated trisomic NCC deficiencies at embryonic time points. Furthermore, prenatal EGCG treatment normalized some craniofacial phenotypes, including cranial vault in adult Ts65Dn mice. Normalization of Dyrk1a copy number in an otherwise trisomic Ts65Dn mice normalized many dimensions of the cranial vault, but did not correct all craniofacial anatomy. These data underscore the complexity of the gene–phenotype relationship in trisomy and suggest that changes in Dyrk1a expression play an important role in morphogenesis and growth of the cranial vault. These results suggest that a temporally specific prenatal therapy may be an effective way to ameliorate some craniofacial anatomical changes associated with DS
Yukawa Unification and the Superpartner Mass Scale
Naturalness in supersymmetry (SUSY) is under siege by increasingly stringent
LHC constraints, but natural electroweak symmetry breaking still remains the
most powerful motivation for superpartner masses within experimental reach. If
naturalness is the wrong criterion then what determines the mass scale of the
superpartners? We motivate supersymmetry by (1) gauge coupling unification, (2)
dark matter, and (3) precision b-tau Yukawa unification. We show that for an
LSP that is a bino-Higgsino admixture, these three requirements lead to an
upper-bound on the stop and sbottom masses in the several TeV regime because
the threshold correction to the bottom mass at the superpartner scale is
required to have a particular size. For tan beta about 50, which is needed for
t-b-tau unification, the stops must be lighter than 2.8 TeV when A_t has the
opposite sign of the gluino mass, as is favored by renormalization group
scaling. For lower values of tan beta, the top and bottom squarks must be even
lighter. Yukawa unification plus dark matter implies that superpartners are
likely in reach of the LHC, after the upgrade to 14 (or 13) TeV, independent of
any considerations of naturalness. We present a model-independent, bottom-up
analysis of the SUSY parameter space that is simultaneously consistent with
Yukawa unification and the hint for m_h = 125 GeV. We study the flavor and dark
matter phenomenology that accompanies this Yukawa unification. A large portion
of the parameter space predicts that the branching fraction for B_s to mu^+
mu^- will be observed to be significantly lower than the SM value.Comment: 34 pages plus appendices, 20 figure
Detailed investigation into the cytogenetic constitution and pregnancy outcome of replacing mosaic blastocysts detected with the use of high-resolution next-generation sequencing
Objective: To determine the pregnancy outcome potential of mosaic embryos, detected by means of preimplantation genetic screening (PGS) with the use of next-generation sequencing (NGS). Design: Retrospective study. Setting: Genetics laboratories. Patient(s): PGS cycles during which either mosaic or euploid embryos were replaced. Intervention(s): Blastocysts were biopsied and processed with the use of NGS, followed by frozen embryo transfer. Trophectoderm (TE) biopsies were classified as mosaic if they had 20%–80% abnormal cells. Main Outcome Measure(s): Implantation, miscarriage rates, and ongoing implantation rates (OIRs) were compared between euploid and types of mosaic blastocysts. Result(s): Complex mosaic embryos had a significantly lower OIR (10%) than aneuploidy mosaic (50%), double aneuploidy mosaic (45%), and segmental mosaic (41%). There was a tendency for mosaics with 40%–80% abnormal cells to have a lower OIR than those with 40% abnormal cells and those with multiple mosaic abnormalities (chaotic mosaics) are likely to have lower OIRs and should be given low transfer priority
- …