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Abstract 

The relationship between gene dosage imbalance and phenotypes associated with Trisomy 21, 

including the etiology of abnormal bone phenotypes linked to Down syndrome (DS), is not well 

understood. The Ts65Dn mouse model for DS exhibits appendicular skeletal defects during 

adolescence and adulthood but the developmental and genetic origin of these phenotypes remains 

unclear. It is hypothesized that the postnatal Ts65Dn skeletal phenotype originates during 

embryonic development and results from an increased Dyrk1a gene copy number, a gene 

hypothesized to play a critical role in many DS phenotypes. Ts65Dn embryos exhibit a lower 

percent bone volume in the E17.5 femur when compared to euploid embryos.  Concomitant with 

gene copy number, qPCR analysis revealed a ~1.5 fold increase in Dyrk1a transcript levels in the 

Ts65Dn E17.5 embryonic femur as compared to euploid. Returning Dyrk1a copy number to 

euploid levels in Ts65Dn, Dyrk1a+/- embryos did not correct the trisomic skeletal phenotype but 

did return Dyrk1a gene transcript levels to normal. The size and protein expression patterns of 

the cartilage template during embryonic bone development appear to be unaffected at E14.5 and 

E17.5 in trisomic embryos. Taken together, these data suggest that the dosage imbalance of 

genes other than Dyrk1a are involved in the development of the prenatal bone phenotype in 

Ts65Dn embryos.  

 

 

 

Running title: Origin of the Ts65Dn bone phenotype 
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1. Introduction 

 

 Down syndrome (DS) or Trisomy 21 (Ts21) results from the presence of an extra copy of 

human chromosome 21 (Hsa21) and occurs in approximately 1/700 live births (Parker et al., 

2010). The dosage imbalance of genes on Hsa21 leads to subsets of over 80 phenotypes that are 

clinically associated with DS and vary in severity and penetrance on an individual basis (Deutsch 

et al., 2005; Epstein, 2001). Individuals with DS exhibit alterations in the development and 

maintenance of their appendicular skeletons both pre- and postnatally (de Moraes et al., 2008; 

Keeling et al., 1997). Ultrasound measurements of the long bones during the second trimester 

where fetuses with DS exhibit shortened humerus and femur lengths suggest changes in prenatal 

DS bone development (Gray et al., 2009; Longo et al., 2004; Weisz et al., 2008). Postnatally, 

individuals with DS exhibit severe reductions in stature resulting from alterations in the normal 

cycle of skeletal growth during adolescent development (de Moraes et al., 2008). Furthermore, 

the mineral properties of bone are altered in individuals with DS.  Individuals with DS exhibit a 

reduction in areal bone mineral density (BMD) in the spine, hip, and total body (Guijarro et al., 

2008), as well as decreased strength in the femoral neck (Baptista et al., 2005). These 

deficiencies in bone mineral density are likely responsible for the increased risk of osteoporosis 

in both male and female individuals with DS (Center et al., 1998; Schrager, 2004; van Allen et 

al., 1999). Despite a gross structural understanding of the appendicular skeletal phenotypes, little 

is known about the origin and consequences of altered bone development in individuals with DS. 

The Ts(1716)65Dn (Ts65Dn) mouse model is the most widely used model in the study of 

DS. Ts65Dn mice contain segmental trisomy for mouse chromosome 16 (Mmu16) resulting in 

three copies of approximately half of the gene orthologs triplicated in Ts21 (Davisson et al., 

1993; Sturgeon and Gardiner, 2011). Ts65Dn mice exhibit several phenotypes similar to those 

observed in humans with DS including cognitive impairment, craniofacial and skeletal 

abnormalities, and cardiac anomalies (Blazek et al., 2011; Moore, 2006; Reeves et al., 1995; 

Richtsmeier et al., 2000) and have been instrumental in understanding the developmental origin 

of DS phenotypes. Ts65Dn embryos exhibit attenuated growth at E9.5 and E13.5, as measured 

by volume, crown-rump length and area, and this deficit continues through adolescence, as 

trisomic mice are significantly smaller by mass when compared to euploid littermates at 

postnatal day 0 (P0) and P6 (Blazek, 2010; Roper et al., 2006). Ts65Dn mice exhibit a reduction 
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in cell number and volume in the mandibular precursor at E9.5 and E13.5, deficits hypothesized 

to contribute the reduced mandible phenotype observed postnatally (Billingsley et al., 2013; 

Roper et al., 2009).  

Previously, we identified an abnormal appendicular skeletal phenotype in 6 and 16 week 

old Ts65Dn mice. Ts65Dn mice exhibited reduced BMD, altered trabecular microarchitecture, 

and decreased mineralization compared to euploid mice, suggesting that trisomy significantly 

alters the normal development and maintenance of the appendicular skeleton (Blazek et al., 

2011). Additional work on the Ts65Dn appendicular skeletal phenotype corroborated our 

findings and identified deficiencies in osteoclast and osteoblast number likely contributing to the 

weakened bone phenotype observed in Ts65Dn mice (Fowler et al., 2012). We observed that 

alterations in bone mineral density and trabecular microarchitecture were more severe at 6 weeks 

than 16 weeks of age in Ts65Dn mice and this suggested that alterations in bone growth would 

be detectable during early postnatal development and may originate embryonically. The 

development of the appendicular skeleton occurs via endochondral ossification where a cartilage 

template is formed and later replaced by mineralized bone during development. After the initial 

establishment and growth period, a coordinated process involving bone resorption and bone 

formation, known as remodeling, occurs continuously throughout life to maintain homeostasis in 

the appendicular skeleton. Based on the prenatal origins of many abnormalities associated with 

DS (Moore and Roper, 2007) and the differences observed in the bone phenotypes between 6 and 

16 weeks of age, we hypothesized that the Ts65Dn appendicular skeletal phenotype originates 

during embryonic development. 

In addition to the lack of knowledge regarding the origin of the Ts65Dn bone phenotype, 

the gene-phenotype relationships leading to skeletal deficits in DS are equally uncharacterized.  

It has been hypothesized that dual specificity tyrosine threonine kinase 1a (DYRK1A), found in 

three copies in humans with DS and Ts65Dn mice, contributes to several DS phenotypes, 

including skeletal abnormalities, via its interaction with the trisomic gene product of regulator of 

calcineurin 1 (RCAN1) and the Nuclear factor of activated T-cells (NFATc) pathway (Arron et 

al., 2006). It has been hypothesized that DYRK1A and RCAN1 overexpression in trisomy 

negatively regulates NFATc transcriptional activity via the direct phosphorylation of NFATc by 

DYRK1A and the inhibition of the NFAT dependent phosphatase, calcineurin, by RCAN1. 

These interactions are hypothesized to reduce the nuclear localization and, subsequently NFATc 
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transcriptional activity in specific cell types.  NFATc has been shown to be involved in both 

osteoblast and osteoclast development (Winslow et al., 2006; Zhao et al., 2010), and its activity 

was significantly reduced in bone marrow mesenchymal cells isolated from the bones of Dyrk1a 

overexpressing transgenic mice (Lee et al., 2009). Furthermore, Dyrk1a overexpressing 

transgenic mice exhibit severe bone abnormalities similar to those observed in Ts65Dn mice 

(Blazek et al., 2011; Lee et al., 2009), suggesting Dyrk1a as a candidate gene for the 

development of DS associated bone abnormalities. 

Based on the findings that several Ts65Dn phenotypes originate during embryonic 

development and the evidence suggesting Dyrk1a overexpression affects appendicular bone 

development, we hypothesized that the Ts65Dn postnatal phenotype originates during prenatal 

development in a Dyrk1a dependent manner. To test this hypothesis, we assessed embryos from 

Ts65Dn mice at embryonic day (E) 13.5, E14.5, and E17.5, and from Ts65Dn, Dyrk1a+/- mothers 

(containing only two functional copies of Dyrk1a) at E13.5 and E17.5. Our data suggest that the 

Ts65Dn postnatal appendicular bone phenotype begins as early as E17.5 with a reduction in 

percent bone volume; however, no abnormalities were observed in the establishment or 

development of the cartilage template during the embryonic processes of endochondral 

ossification. Dyrk1a copy number variation and transcript expressions were not significantly 

correlated with the prenatal Ts65Dn appendicular skeletal phenotype. These data suggest that 

trisomic Dyrk1a is not a significant contributor to the abnormal embryonic development of the 

Ts65Dn femur, and by extension, the appendicular skeleton.   
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2. Results 
 

2.1 Trisomy affects bone mineralization at E17.5 in the Ts65Dn femur  

To determine if the postnatal Ts65Dn appendicular skeletal phenotype originates during 

embryonic development with the involvement of Dyrk1a, bone analyses were conducted on 

femurs from E13.5, E14.5, and E17.5 embryos in several comparative sets of mice. Bone 

microarchitecture was evaluated in Ts65Dn (n=13) and euploid (n=10) embryos isolated from 

Ts65Dn mothers (Figure 1), like those used in the original postnatal skeletal study (Blazek et al., 

2011). Additionally, to determine if Dyrk1a copy number influences prenatal femoral 

development, bone microarchitecture was assessed in offspring of Ts65Dn mice bred with 

Dyrk1a+/- mice (containing only one functional copy of the Dyrk1a gene) resulting in four 

possible genotypes: Ts65Dn (n=9), Ts65Dn, Dyrk1a+/- (Ts65Dn with two functional copies of 

Dyrk1a; n=12), euploid (n=8), and euploid, Dyrk1a+/- (one functional copy of Dyrk1a; n=9) 

embryos (Figure 1).  

 Micro-CT (µCT) analysis of E17.5 femurs revealed Ts65Dn embryos exhibited a 

significantly lower percent bone volume (BV/TV; bone volume/total femur tissue volume) in the 

developing femur when compared to euploid embryos (Figure 1C,D). Despite having only two 

functional copies of Dyrk1a, Ts65Dn, Dyrk1a+/- E17.5 femurs had a similar percent bone volume 

in the femoral primary ossification center when compared to Ts65Dn embryos and this value was 

significantly lower compared to euploid embryos (Figure 1D). Euploid, Dyrk1a+/- embryo femurs 

exhibited lower percent bone volume as compared to euploid femurs, but this value was not 

statistically significant (p=0.09; Figure 1D).  
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Figure 1: A 3D-reconstruction (A) and cross-section (B) taken from µCT analysis of the E17.5 femoral primary 

ossification center. 3D analysis of percent bone volume in the E17.5 primary ossification center revealed a 

significantly lower bone volume per tissue volume in Ts65Dn and Ts65Dn, Dyrk1a+/- embryos when compared to 

euploid (C,D). Mean ±SEM; bars between groups of mice denote significance with a p-value < 0.05.  

 

2.2 Expression of Dyrk1a is independent of changes in Ts65Dn E17.5 femur bone mineralization  

Dyrk1a and Rcan1 are found in three copies in the Ts65Dn mouse model and are 

theoretically expected to be overexpressed approximately 1.5 fold. To determine if expression of 

Dyrk1a and Rcan1 transcripts are altered by trisomy and contribute to the reduction in bone 

mineralization found at E17.5, RNA from the femoral primary ossification center of E17.5 

euploid, Ts65Dn, Ts65Dn, Dyrk1a+/-, and euploid, Dyrk1a+/- embryos were assessed. 

Quantitative PCR (qPCR) analysis of cDNA from the femoral primary ossification center of 

Ts65Dn and euploid E17.5 embryos revealed that Dyrk1a and Rcan1 transcripts were elevated in 

Ts65Dn embryos (Figure 2), although Rcan1 was not significantly different from euploid 

(p=0.095). Ts65Dn, Dyrk1a+/- embryonic femurs exhibited significantly lower Dyrk1a transcript 

levels when compared to Ts65Dn (p = 0.02) and these were similar to those observed in the 

euploid embryonic femur (~1.03 fold). Rcan1 transcripts were increased in Ts65Dn, Dyrk1a+/- 

compared to Ts65Dn embryos but this increase was not significant (p=0.06). Euploid, Dyrk1a+/- 

embryos containing only one functional copy of Dyrk1a exhibited a significant decrease in 

Dyrk1a transcripts (0.54 fold, p=0.004) in the primary ossification center as compared to euploid 
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embryos (Figure 2). Dyrk1a RNA transcript levels in brain tissue of similarly aged offspring 

were comparable to those found in femur for all embryonic genotypes, and RNA transcript levels 

for Rcan1 were ~1.5 fold euploid in both Ts65Dn and Ts65Dn, Dyrk1a+/- and not significantly 

different from euploid levels in euploid, Dyrk1a+/- brain. 

   
Figure 2: qPCR analysis of cDNA from the primary ossification center transcripts of E17.5 Ts65Dn (n=3), Ts65Dn, 

Dyrk1a+/- (n=3), euploid, Dyrk1a+/- (n=3) and euploid (n=3) embryos indicate that Dyrk1a transcripts were 

significantly overexpressed in Ts65Dn when compared to euploid embryos. Depicted Dyrk1a results are from target 

Mm01209880_m1 and qPCR from Mm00432929_1 gave similar results. Rcan1 transcripts were increased in the 

primary ossification center of these embryos, however, these increases were not significant. Mean normalized to 

euploid levels ±SEM. Bars between groups of mice denote a p-value < 0.05.  

 

2.3 Nfatc cellular localization is unaffected by trisomy in embryonic femoral cartilage anlagen 

  Based on the finding of a reduced percent bone volume in the primary ossification center 

of E17.5 Ts65Dn embryos and increased expression of both Dyrk1a and Rcan1 transcripts, it was 

hypothesized that NFATc1 or NFATc2 activity would be reduced in the bone precursor of 

Ts65Dn embryos. To further assess if the Dyrk1a-Rcan1-NFAT pathway is involved in the 

abnormal prenatal development of the femur in Ts65Dn mice, immunofluorescent analysis was 

conducted to evaluate the cellular localization of NFATc1 and NFATc2 in the developing femur 

of Ts65Dn and euploid embryos. We assessed NFATc1/2 localization in the developing femur 

during the beginning stages of endochondral ossification at E13.5. Analysis of the cartilage 

anlagen in the femoral precursor of E13.5 Ts65Dn and euploid embryos revealed no significant 

differences in NFATc1 or NFATc2 nuclear localization (active form) (Figure 3).   
  



 9 

Figure 3: Immunofluorescent analysis of nuclear NFATc1 and NFATc2 in the E13.5 femoral cartilage anlagen was 

conducted using confocal imaging (A, images taken at 80x). (B) No significant differences were observed in the 

nuclear localization (active form) of NFATc1 or NFATc2 in the cartilage anlagen of the developing femur in 

Ts65Dn embryos (n=6) when compared to euploid embryos (n=6). Mean pixels colocalized with DAPI ±SEM. 
 

2.4 The cartilage template is unaffected in the Ts65Dn embryonic femur 

 The formation of the femur occurs via a process of endochondral ossification, where a 

cartilage template precedes the formation of bone. The cartilage template is composed of zones 

of chondrocytes, or cartilage cells, which extend outward toward the growth plate. This process 

begins between E12.5 and E13.5 and proceeds through development until the bones have 

matured (Kauffman, 1992). Based on the abnormal phenotype observed in postnatal Ts65Dn 

mice and the reduction in percent bone volume observed at E17.5, we hypothesized that trisomy 

and/or Dyrk1a overexpression affects development of the cartilage template and the processes of 

endochondral ossification. Using histological staining, we assessed the lengths of the embryonic 

femur, primary ossification center, proliferative zone of chondrocytes (PZ; area where 

chondrocytes are proliferating thereby creating the growth plate), and zone of hypertrophic 
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chondrocytes (HZ; an area where chondrocytes are undergoing hypertrophy making way for 

osteoblasts to mineralize bone) to analyze the developing cartilage template and femur in 

Ts65Dn embryos (Figure 4). No significant differences were found in the length of the femur or 

the length (Figure 4C,F) or width (data not shown for E17.5) of the hypertrophic chondrocyte 

zone at either E14.5 or E17.5 in the Ts65Dn femur when compared to euploid mice. 

Furthermore, no differences were observed in the length of the primary ossification center, or 

proliferative zone between Ts65Dn and euploid mice in either group at E17.5 (Table 1). Return 

of Dyrk1a copy number to normal levels in Ts65Dn, Dyrk1a+/- mice did not alter any of the 

embryonic femoral template parameters at E17.5 (Table 1). Euploid, Dyrk1a+/- embryos 

exhibited a significantly shorter HZ when compared to the other three genotypes and this 

difference still existed when HZ length was normalized with femur length and compared to 

euploid or Ts65Dn, Dyrk1a+/- mice (Table 1).  

 

 
Figure 4: Histological analysis of the cartilage template in euploid (A,B) and Ts65Dn (D,E) limbs at E14.5 (A,D) 

and E17.5 (B,E).  Mean femur length (±SEM) was measured in Ts65Dn (E13.5, n=17; E17.5, n = 13) and euploid 

(E13.5, n = 11; E17.5 n = 12) (C). The zones of developing chondrocytes include the hypertrophic zone (HZ) and 

proliferative zone (PZ) shown and the HZ was measured and compared in Ts65Dn (E14.5, n = 4; E17.5, n = 10) and 
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euploid (E14.5, n =4; E17.5, n = 13) embryos.  No significant difference was observed in the length of the HZ 

between the two genotypes at either time point (F). 

 

Table 1: Analysis of the E17.5 femoral template in offspring from Ts65Dn, Dyrk1a+/- mice 
 

  Euploid Ts65Dn  Ts65Dn, Dyrk1a+/-  Euploid, Dyrk1a+/-  

  n=8 n=9 n=12 n=9 

Femur Length (mm) 3.14 (0.08) 3.16 (0.1) 3.08 (0.07) 3.14 (0.08) 

Primary OC (mm) 1.13 (0.07) 1.17 (0.06) 1.13 (0.04) 1.09 (0.06) 

POC/Bone Length (%) 35.94 (1.89) 36.74 (0.63) 36.75 (1.01) 34.68 (1.37) 

HZ Length(mm) 0.161 (0.005) 0.156 (0.004) 0.154 (0.002) 0.147 (0.002)A,B,C 

HZ/Bone Length (%) 5.16 (0.26) 4.97 (0.22) 5.06 (0.12) 4.72 (0.15)A,C 

PZ Length (mm) 0.274 (0.008) 0.265 (0.010) 0.273 (0.006) 0.271 (0.007) 

PZ/Bone Length (%) 8.76 (0.37) 8.41 (0.33) 8.95 (0.19) 8.67 (0.32) 

Data are reported as mean (±SEM); OC (ossification center), HZ (hypertrophic chondrocyte zone), PZ 
(Proliferative zone); A p < 0.05 when compared to euploid, B p < 0.05 when compared to Ts65Dn, C p < 0.05 
when compared to Ts65Dn, Dyrk1a+/-.  

 

To further assess the development of the cartilage anlagen in Ts65Dn mice 

immunohistochemistry was performed on E14.5 embryos to identify the expression of the 

cartilage specific proteins collagen II (differentiated chondrocytes) and collagen X (hypertrophic 

chondrocytes). These proteins are temporally expressed in a sequential pattern during the 

progression of endochondral ossification. As suggested by the findings above, no discernible 

differences were found in the distribution of collagen II or X when comparing the forelimbs of 

Ts65Dn (n = 5) and euploid (n = 5) embryos. These proteins were localized to the extracellular 

matrix and found within the expected regions of the developing limb (Figure 5). 
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Figure 5: For both Ts65Dn (n=5; A,C) and euploid embryos (n=5, B.D), 8µm section were analyzed using 

fluorescent immunohistochemistry to visualize the pattern of expression of collagen II in red (A, B) and collagen X 

in green (C, D) within the developing forelimb.  Tissue sections were counterstained with DAPI (blue). 

 

3. Discussion 

 

Ts65Dn mice exhibit an osteopenic postnatal appendicular skeletal phenotype (Blazek et 

al., 2011) similar to that documented in humans with DS (Baptista et al., 2005; de Moraes et al., 

2008), and it has been hypothesized that these phenotypes originate during embryonic 

development of the skeleton. Additionally, due to its presence in three copies, subsequent 

overexpression, and involvement in several critical developmental signaling pathways, Dyrk1a 

has been hypothesized to be a contributing gene in a number of DS phenotypes including 

cognitive impairment (Haydar and Reeves, 2012), Alzheimer disease (Kimura et al., 2007; 

Wegiel et al., 2008), and abnormal skeletal development (Arron et al., 2006; Lee et al., 2009). In 

this work, we set out to determine if the abnormal Ts65Dn postnatal bone phenotype originates 

during embryonic development and the role, if any, that Dyrk1a copy number variation plays in 
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the development of this phenotype. We hypothesized that Ts65Dn mice would exhibit significant 

alterations in prenatal bone development compared to euploid embryos and that overexpression 

of Dyrk1a transcripts due to trisomy of the gene would play a major role in the development of 

the abnormal prenatal bone phenotype. 

µCT analysis of E17.5 femurs revealed a significantly lower percent bone volume in the 

developing Ts65Dn embryo when compared to euploid. Return of Dyrk1a copy number to 

euploid levels in Ts65Dn, Dyrk1a+/- mice did not affect percent bone volume in the embryonic 

femur. The lower percent bone volume observed in the E17.5 primary ossification center in 

Ts65Dn and Ts65Dn, Dyrk1a+/- embryos suggests that alterations in bone cell number or activity 

begin during embryonic development and likely contribute to the postnatal Ts65Dn appendicular 

skeletal phenotype. It is possible that osteoblast activity is decreased in the E17.5 primary 

ossification center similar to what was observed in postnatal Ts65Dn mice, leading to a slower 

rate of mineralization and the phenotype observed. Alternatively, there may be deficiencies in 

cellular recruitment and/or differentiation of osteoblasts in the E17.5 primary ossification center 

resulting in the lower percent bone volume at this developmental stage. To determine the role of 

osteoblast number and/or activity in the development of the E17.5 femoral phenotype, a dynamic 

bone analysis utilizing fluorescent dyes that incorporate into newly formed bone material in 

Ts65Dn embryos could be performed. Dyes injected into the mother 2 or 3 days apart when bone 

just begins to form (e.g. E13.5 and E15.5) would allow for the analysis of osteoblast number and 

activity in the E17.5 embryos.   

qPCR analysis revealed that despite measurable reduction in percent bone volume, 

Dyrk1a transcripts were expressed at the expected euploid levels in the embryonic primary 

ossification center in Ts65Dn, Dyrk1a+/- femurs.  Euploid, Dyrk1a+/- mice containing only one 

functional copy of the gene exhibited the predicted reduction in Dyrk1a transcript levels (0.54 

fold) as compared to euploid embryos and percent bone volume was not significantly affected. A 

reduction in Dyrk1a transcripts did correlate with changes in the HZ in the euploid, Dyrk1a+/-

femoral template. A trend toward higher Rcan1 transcript expression in the Ts65Dn and Ts65Dn, 

Dyrk1a+/- and euploid, Dyrk1a+/- embryonic femurs may be correlated to the significantly lower 

percent bone volume in femurs from E17.5 embryos, but will require further evaluation with 

additional embryos.  These results highlight a potential critical role for gene dosage 

compensation in a temporal and spatial manner in the developing Ts65Dn embryonic femur and 
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suggest that other gene(s) found in three and two copies are likely involved the establishment of 

the altered appendicular bone phenotype at this time point. The lower percent bone volume 

observed in Ts65Dn and Ts65Dn, Dyrk1a+/- embryos suggests that changes in Dyrk1a transcript 

levels do not directly affect the development of the abnormal embryonic appendicular bone 

phenotype observed in Ts65Dn mice at E17.5. Though RNA transcript levels were not quantified 

as in the present experiment, a similar gene dosage reduction experiment found that three copies 

of Ets2 was not sufficient to fully cause hypothesized DS-related craniofacial and thymus 

phenotypes in Ts65Dn mice (Hill et al., 2009). 

The abnormal bone phenotype identified in adolescent Ts65Dn mice suggested that 

trisomy may alter bone during embryonic development and the critical processes of 

endochondral ossification. The establishment of the cartilage template is critical during this 

phase of development and previous research suggests that key cartilage related genes, including 

Sox9 and the hedgehog family, are affected by the presence of trisomy (Billingsley et al., 2013; 

Roper et al., 2009). Assessment of the embryonic endochondral cartilage template revealed no 

differences in the length or size of the zones of chondrocyte development between Ts65Dn and 

euploid embryos at E14.5 or E17.5, nor in the temporal expression of the cartilage markers 

collagen II and X at E14.5. Unlike in humans with DS, where shortened long bones have been 

identified during fetal development, the overall femoral length (E13.5 and E17.5) and primary 

ossification center (E17.5) were not affected by trisomy in Ts65Dn mice. These findings suggest 

that other trisomic genes found in Ts21, but not triplicated in Ts65Dn mice, may play a role in 

the development of the abnormal appendicular bone phenotype associated with DS during 

prenatal bone development.  Though percent bone volume is affected by trisomy, our results 

suggest that the patterning of the cartilage template and the lengthening of the embryonic bone 

during the initial stages of endochondral ossification are not affected by trisomy in the Ts65Dn 

embryonic femur. 

  Here we are the first to report that percent bone volume is altered at E17.5 in the 

developing Ts65Dn femur and this is likely the onset to the abnormal bone phenotype observed 

in the postnatal Ts65Dn skeleton. Postnatal Ts65Dn mice exhibit an osteopenic appendicular 

skeletal phenotype with lower bone mineral density, deficiencies in mineralization, and altered 

structural characteristics when compared to euploid mice (Blazek et al., 2011). Cellular analysis 

of the Ts65Dn femur identified a decreased number of osteoblasts and osteoclasts in the femur at 
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12 weeks of age (Fowler et al., 2012), and our further research has shown that osteoclast number 

is affected in adolescent Ts65Dn bone (unpublished data).  These results suggest that the cellular 

activity of bone is affected during the onset of primary spongiosa development and the 

establishment of the marrow cavity. As the bone matures and more osteoblasts and osteoclasts 

are recruited to the developing ossification front, these abnormalities may become more severe 

leading to the phenotype observed at 6 weeks of age in the Ts65Dn femur.  

Contrary to what was hypothesized, the Dyrk1a-Rcan1-NFAT pathway does not appear 

to directly affect the embryonic development of the appendicular skeleton in Ts65Dn mice, 

despite overexpression of Dyrk1a transcripts in the embryonic Ts65Dn femur. We did not find 

evidence to support the hypothesis that triplication of Dyrk1a and Rcan1 inhibits NFAT 

functionality by reducing nuclear localization. No differences in NFATc1 or 2 protein in the 

nuclei were detected in trisomic embryos at E13.5. However, we cannot rule out that NFAT 

function may affect trisomic bone development at later time points, either pre- or postnatally or 

that other NFATc family members may be involved in transcriptional regulation in the cartilage 

primordia at this developmental stage. Furthermore, the lack of differences in femur length and 

length of the primary ossification center in Ts65Dn and euploid embryos suggest that the critical 

developmental changes leading to the abnormal Ts65Dn appendicular skeleton occur during the 

processes of postnatal bone development. Concurrent research is being conducted to further 

assess the role of Dyrk1a copy number on the postnatal development of the Ts65Dn postnatal 

phenotype and to identify the mechanism by which this phenotype occurs.  

 

4. Materials and Methods: 

 

4.1 Animals  

Female B6EiC3Sn a/A-Ts(1716)65Dn (Ts65Dn) and male C57BL6/J and C3H/HeJ stocks 

used in this study were originally obtained from The Jackson Laboratory (Bar Harbor, ME). 

Ts65Dn females used as mothers in this study were generated by matings with B6C3F1 males at 

Indiana University-Purdue University Indianapolis (IUPUI) or Franklin and Marshall College 

and were identified by FISH (Moore et al., 1999) or PCR genotyping (Reinholdt et al., 2011).   

B6129 Dyrk1a+/- male mice (Fotaki et al., 2002) were backcrossed to B6C3F1 mice for ≥7 

generations to parallel the genetic background of Ts65Dn mice. To obtain embryos for this study 
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Ts65Dn mothers were bred to male B6C3F1 or Wnt1-cre mice on a B6 background (for E13.5-

E17.5 studies) or male Dyrk1a+/- mice (E17.5) and mothers were checked for vaginal plugs the 

morning after mating with E0.5 defined as 12:00 pm on the day the female was plugged. 

Embryos were genotyped for trisomy and mutant Dyrk1a as previously described (Fotaki et al., 

2002).  All animal use and protocols were approved by the IACUC committees at IUPUI and 

Franklin and Marshall College. 

 

4.2 Processing of Embryos 

Ts65Dn mothers carrying embryos were sacrificed at E13.5, 14.5, or 17.5 days post-

conception and embryos were subjected to fixative or hypothermia.  For immunofluorescence, 

E13.5 embryos were decapitated and the head and torso were embedded separately.  Briefly, 

embryos were fixed in 4% paraformaldehyde, 5% sucrose in 0.1M phosphate buffer ph 7.4 for 4 

hours and infiltrated overnight with 20% sucrose in phosphate buffer for cryo-embedding. For 

paraffin embedding of E14.5, embryos were decalcified with EDTA for three days, serially 

dehydrated, and embedded in paraffin.  Cryo-embedded torsos were stored at -80°C and 

sectioned using a cryostat at a thickness of 10 μm. Paraffin embedded embryos were sectioned 

on a microtome at 8 μm and stored at room temp. The left and right femurs were dissected from 

E17.5 embryos, washed with PBS, and fixed overnight in 4% paraformaldehyde.  Femurs were 

washed with PBS, dehydrated using sequential alcohol washes, cleared with xylenes, and 

embedded in paraffin and stored at 4°C.  Embryos were sectioned on a microtome at a thickness 

of 10 μm. 

 

4.3 Immunofluorescence 

Torso sections of E13.5 and E14.5 Ts65Dn and euploid embryos were examined for the 

cellular localization of Nfatc1 and Nfatc2, and Collagen II and X, respectively, in the cartilage 

primordia of the limb.  For analysis of E13.5 embryos, sections were permeabilized in 1X PBS 

with 0.5% triton X-100, washed in 1X PBS with 5% SDS for antigen retrieval, blocked with 

10% donkey serum in PBS with 0.2% triton X-100 for 1 hour, and treated with Rabbit polyclonal 

Nfatc1 (sc-13033, dilution 1:20, SCBT) and goat polyclonal Nfatc2 (CSC-1151, dilution 1:20, 

SCBT) diluted in blocking buffer overnight in a humidified chamber at 4°C.  Sections were 

washed and incubated with secondary antibody (Alexaflour 594 donkey anti rabbit IgG 
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(Invitrogen A21207), 1:750 and Alexafluor 488 donkey anti goat IgG (Invitrogen A-11055), 

1:750) for 1 hour at room temperature and treated with Prolong gold DAPI antifade (Invitrogen, 

P36935), coverslipped, and sealed with nail polish. Slides were imaged using an Olympus FV-

111-MPE confocal multiphoton microscope (Olympus, Center Valley, PA). Colocalization of 

Nfatc1/2 and DAPI in the nuclei was analyzed using Image J software (National Institute of 

Health, Bethesda, MD) as previously described (Dunn et al., 2011). For E14.5 embryos, sections 

were digested with hyaluronidase, blocked, incubated overnight with primary antibody (rabbit 

polyclonal anti-collagen X (Abcam); mouse monoclonal collagen II (DSHB)) diluted 1/100 in 

blocking buffer, washed, and incubated with the secondary antibodies listed previously.  Slides 

were viewed with a Leica DMRB and imaged using ProgRes CapturePro software (Jenoptik 

AG). 

  

4.4 MicroCT imaging 

Prior to embedding, femurs from Ts65Dn, Ts65Dn Dyrk1a +/-, euploid, and euploid 

Dyrk1a +/- E17.5 embryos were imaged using the Skyscan 1172 microCT and analyzed using 

the parameters and methods previously described (Blazek et al., 2011). The analysis of the 

reconstructed primary ossification center was slightly altered from the listed protocol as the 

region of interest included the entire ossification boundary of the embryonic femur. A 3D 

analysis was conducted to obtain the percent bone volume (a relative measure of total bone 

mineral present). Additionally, the length of the primary ossification center was measured and 

compared among groups of mice.  

 

4.5 Histology 

To determine if trisomy results in changes in the cartilage template of the E13.5, E14.5 

and E17.5 femur, femur sections were subjected to Von Kossa (bone mineral) and alcian blue 

(chondrocytes) staining.  For whole mount staining of E13.5 embryos were fixed in ethanol, 

stained with alcian blue (0.15%; Sigma, St. Louis), cleared with KOH in glycerol, washed, and 

imaged to obtain femur lengths using a Motic BA400 microscope, Moticam 2300 camera, and 

Motic software. For stained sections, slides were deparaffinized in Citrisolv (Fisher), rehydrated 

with sequential ethanol washed, treated with 1% silver nitrate under UV-light, and washed with 

5% sodium thiosulfate to remove any unreacted silver.  Sections were then incubated with 1% 
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alcian blue solution in acetic acid (pH 2.5), washed with DI water and cover-slipped with 

aqueous mounting media.  Stained sections were imaged using the Nikon Ds-Fi1 Digital Sight 

camera and the length of the bone, primary ossification center, and zones of cartilage were 

analyzed using Image J software. 

 

4.6 Quantitative PCR 

RNA was isolated from mineralized bone from E17.5 femurs and cDNA conversion was 

conducted on 500 ng RNA from each sample using previously described methods (Deitz and 

Roper, 2011). qPCR was performed using Dyrk1a (Targets, Mm01209880_m1 and 

Mm00432929_m1 cover Dyrk1a exons 4-5 and 5-6, respectively, (NCBI Reference sequence 

NM_001113389.1), which correspond to exons 6-7 and 7-8 in the Dyrk1a genomic sequence 

depicted in Fotaki et al. 2002); Rcan1 (Target, Mm01213406_m1 amplifying the 5'UTR region 

of the AF263240.1, AK010696.1, mCT169224.0, mCT169225.0 transcripts); and Actinb 

(endogenous, Mm00607939_s1 (Life Technologies)) primers using the manufacturer’s 

instructions (TaqMan Gene Expression Assay, Applied Biosystems, Foster City, CA). The 

crossing point (Cp) values (done in triplicate) from each target primer were analyzed and 

normalized to the reference probe using the Applied Biosystems 7300 Real Time PCR System 

and software (Pfaffl, 2001).  Average values for each primer were compared between euploid 

and Ts65Dn, Ts65Dn Dyrk1a +/-, or euploid Dyrk1a +/- embryos to compute the fold change in 

expression. 

 

4.7 Statistical Analysis 

 Data were analyzed using an independent samples student T-test or ANOVA to compare 

means across groups using SPSS. 
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