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ABSTRACT 

Trisomy 21 causes skeletal alterations in individuals with Down syndrome (DS) but the 

causative trisomic gene and a therapeutic approach to rescue these abnormalities are unknown. 

Individuals with DS display skeletal alterations including reduced bone mineral density, 

modified bone structure and distinctive facial features.  Due to peripheral skeletal anomalies and 

extended longevity, individuals with DS are increasingly more susceptible to bone fractures. 

Understanding the genetic and developmental origins of DS skeletal abnormalities would 

facilitate the development of therapies to rescue these and other deficiencies associated with DS. 

DYRK1A is found in three copies in individuals with DS and Ts65Dn DS mice and has been 

hypothesized to be involved in many Trisomy 21 phenotypes including skeletal abnormalities. 

Return of Dyrk1a copy number to normal levels in Ts65Dn mice rescued the appendicular bone 

abnormalities, suggesting that appropriate levels of DYRK1A expression are critical for the 

development and maintenance of the DS appendicular skeleton. Therapy using the DYRK1A 

inhibitor EGCG improved Ts65Dn skeletal phenotypes. These outcomes suggest that the 

osteopenic phenotype associated with DS may be rescued postnatally by targeting trisomic 

Dyrk1a. 
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INTRODUCTION 

Individuals with Down syndrome (DS) (OMIM 190685; ~1/700 live births (1)) display a 

multifaceted disorder with over 80 clinically defined phenotypes affecting nearly all organ 

systems (2). In addition to cognitive impairment, individuals with DS exhibit alterations in their 

appendicular skeletons, including an abnormal pattern of skeletal growth in the long bones 

during adolescence (3). Both children and adults with DS exhibit a reduction in bone mineral 

density (BMD) (4-6), an abnormal balance of bone formation and resorption during bone 

remodeling (7), which likely contribute to the high incidence of osteopenia and osteoporosis 

present in individuals with DS (8-11). Despite a gross structural understanding of the 

appendicular skeletal phenotypes, little is known about the genetic and cellular bases of altered 

bone development in individuals with DS. 

The Ts(1716)65Dn (Ts65Dn) mouse, the most widely used DS model, contains a small 

marker chromosome that results in three copies of approximately half the gene orthologs found 

on human chromosome 21 (Hsa 21) (12). Ts65Dn mice exhibit numerous parallel phenotypes to 

humans with DS including cognitive, craniofacial, cardiac and bone abnormalities (13-16).  

Ts65Dn mice display a reduction in BMD, as well as osteoporotic-like structural deficiencies in 

the cortical and trabecular bone in adolescent and adult Ts65Dn skull and femurs (15, 17). It is 

hypothesized that deficiencies in osteoblast and osteoclast number and activity likely contribute 

to the Ts65Dn skeletal phenotype (18). 

Despite the identification of structural bone abnormalities in humans with DS and 

Ts65Dn mice, little is known regarding how trisomic genes affect bone maintenance and 

homeostasis. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) is 

found in three copies in humans with DS and Ts65Dn mice (19) and is hypothesized to be 
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involved in many DS phenotypes (20). Analysis of transgenic mice overexpressing Dyrk1a by 

1.5 fold (theoretical dosage imbalance associated with trisomic genes in DS) identified severe 

appendicular skeletal deficiencies and an osteopenic phenotype similar to that observed in 

Ts65Dn mice (21). We hypothesize that increased Dyrk1a gene dosage and kinase activity 

results in the abnormal appendicular skeletal phenotype observed in adolescent Ts65Dn mice. 

Parallel methodologies, one genetic and one therapeutic, were used to reduce DYRK1A 

activity to determine the contribution of Dyrk1a to the Ts65Dn appendicular skeletal phenotype. 

Ts65Dn mice were bred to Dyrk1a+/- heterozygote mutant mice to normalize the functional 

Dyrk1a gene copy number to euploid levels on an otherwise trisomic background. Ts65Dn mice 

were treated with a known DYRK1A inhibitor, Epigallocatechin-3-gallate (EGCG), which has 

been shown to decrease DYRK1A activity. We hypothesized that both the genetic and 

therapeutic rescue of DYRK1A activity would improve the abnormal Ts65Dn appendicular 

skeletal phenotypes.  
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RESULTS 

Dyrk1a gene copy number affects bone density and structure in the Ts65Dn femur 

The present data show that the femur in Ts65Dn DS mice exhibits a significantly lower 

bone mineral density (BMD) when compared to euploid mice (0.034 ± 0.002 vs. 0.043 ± 0.001; 

p < 0.01), confirming our previous conclusion that trisomy alters the normal mineralization of 

bone (15). The return of Dyrk1a to two functional copies in Ts65Dn mice (Ts65Dn, Dyrk1a+/-) 

rescued the femoral BMD phenotype to euploid levels (0.041 ± 0.001). Though skull and 

mandible BMD were also lowered in Ts65Dn mice, these were not corrected in Ts65Dn, 

Dyrk1a+/- mice.  Loss of 1 copy of Dyrk1a in euploid mice led to a significant decrease in 

mandible and skull BMD and a lowered femur BMD when compared to euploid animals 

(Supplemental Table 1), indicating that Dyrk1a copy number is important to normal bone growth 

and maintenance.    

 The microstructure of bone, as measured through microCT analyses, is also affected in 

Ts65Dn mice, as we have previously shown (15). Percent trabecular bone volume and trabecular 

thickness, number, and separation were rescued to euploid levels in the distal femur of Ts65Dn, 

Dyrk1a+/- mice (Fig. 1E-H). The 2D-cross sectional area of the cortical bone was similar 

between Ts65Dn, Dyrk1a+/- and euploid mice and significantly increased compared to Ts65Dn 

mice (Fig. 1I). No significant differences were observed on the 2D-cross sectional perimeter of 

the bone between Ts65Dn and Ts65Dn, Dyrk1a+/- mice (Fig. 1J). These data suggest that 

although the circumference of the periosteal surface in the femur midshaft is unchanged in 

Ts65Dn, Dyrk1a+/- as compared to Ts65Dn mice, the amount of bone material and overall 

thickness of the cortical bone is significantly improved to euploid levels in young adult mice. 
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Dyrk1a copy number impacts cell number and activity in the Ts65Dn femur 

Cells involved in bone modeling and remodeling are affected by Dyrk1a copy number.  

Histomorphometric analysis of the midshaft (cortical bone) and distal femur (trabecular bone) of 

6 week old mice revealed significant alterations in cell number and activity in the Ts65Dn femur 

(Table 1). Mineral apposition rate (MAR), a measure of the rate at which osteoblasts are laying 

down new bone matrix, and bone formation rate (BFR), a measure of the total rate of new bone 

formation on the surface being mineralized, were significantly reduced in Ts65Dn cortical bone 

when compared to euploid animals. Cortical bone MAR and BFR was rescued in Ts65Dn, 

Dyrk1a+/- when compared to Ts65Dn mice (Table 1), suggesting increased Dyrk1a copy number 

leads to decreased periosteal mineralization in the Ts65Dn femur midshaft. Mineralization 

surface at the bone surface (MS/BS), a parameter estimating osteoblast number, was not 

significantly different in any of the four groups. Euploid, Dyrk1a+/- animals exhibited similar 

MS/BS, MAR, and BFR compared to euploid mice despite containing only one functional copy 

of Dyrk1a.  

 In the distal femur, the percent bone volume over total volume (BV/TV) is rescued to 

normal levels in Ts65Dn, Dyrk1a+/- mice (Table 1).  Ts65Dn mice exhibit a significantly lower 

MS/BS, MAR, and BFR in the developing trabecular bone when compared to euploid mice and 

these differences were normalized in Ts65Dn, Dyrk1a+/- mice.  Histological analysis of the bone 

cells in the distal femur identified a significant increase in osteoclast surface (OcS/BS), reflecting 

the percentage of bone surface covered by osteoclasts, and osteoclast number per mm bone 

surface (Oc#/mm BS) in Ts65Dn mice when compared to euploid mice and these values were 

rescued in Ts65Dn, Dyrk1a+/- animals. Despite lower MS/BS and MAR values, no difference 

was observed in osteoid surface/bone surface (OS/BS—representing the percentage of bone 
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surface where osteoblasts are laying down osteoid) in Ts65Dn mice when compared to euploid 

and Ts65Dn, Dyrk1a+/- animals (Table 1). Euploid, Dyrk1a+/- mice exhibited significantly lower 

MAR, BFR, and OS/BS, and significantly higher OcS/BS and Oc#/mm BS in the trabecular bone 

when compared to euploid and Ts65Dn, Dyrk1a+/- animals.  No differences were observed in the 

trabecular bone parameters between Ts65Dn and euploid, Dyrk1a+/- mice except in MAR and 

OS/BS. 

 

Mechanical Properties in Ts65Dn, Dyrk1a+/- Mice 

Ts65Dn mouse femurs exhibit a significant decrease in ultimate force (general integrity 

of the bone), stiffness (related to the mineralization of the bone) and energy to failure (amount of 

energy required to break the bone), when compared to euploid mice (Fig. 2A-C). The force 

required to break the femur and stiffness were rescued to euploid levels in Ts65Dn, Dyrk1a+/- 

mice and energy to failure was increased when compared to Ts65Dn animals (Fig. 2A-C). 

Euploid, Dyrk1a+/- mice exhibit significant reductions in ultimate force and stiffness. These same 

mice have a lower energy to failure but this difference was not significant (p = 0.07). Assessment 

of the material properties of the femur, which take into account the overall size of the bone, 

revealed that Ts65Dn femurs exhibit a significantly lower toughness (amount of energy required 

to cause material failure; Fig. 2D) and normal ultimate stress and modulus (intrinsic strength and 

stiffness, respectively; Fig. 2E,F) when compared to euploid mice. Toughness is rescued to 

euploid levels in Ts65Dn, Dyrk1a+/- femurs (Fig. 2D).  

 

Ts65Dn, Dyrk1a+/- Mice Exhibit Normalized Expression of Dyrk1a in the Femur 
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Analysis of RNA isolated from the femur of 6 week old Ts65Dn mice identified a 1.59 

fold expression (p = 0.15) of Dykr1a RNA transcripts when compared to euploid mice. Ts65Dn, 

Dyrk1a+/- mice exhibited 1.01 fold Dyrk1a expression in the femur (compared to euploid) and 

this expression was not different from euploid levels (p = 0.48).  The increased copy number of 

Dyrk1a in the Ts65Dn long bones also translated to DYRK1A kinase activity of 1.33 fold of that 

found in euploid animals (p = 0.07). Femurs from adolescent Ts65Dn, Dyrk1a+/- mice had 1.25 

fold DYRK1A kinase activity when compared to euploid mice (p = 0.13).  

 

Treatment with a DYRK1A inhibitor improves femoral BMD and trabecular 

microarchitecture in Ts65Dn mice 

 To determine if the known DYRK1A inhibitor EGCG (22) could improve the BMD and 

structural deficits observed in the Ts65Dn skeleton, we treated 3 week old Ts65Dn and euploid 

mice with EGCG (~9mg/kg/day) or water for 3 weeks.  No differences were observed in the 

weight at 6 weeks of age, the amount of liquid consumed between Ts65Dn control and treated 

mice, or the dosage of EGCG received by Ts65Dn and euploid mice during the treatment period 

(Supplemental Fig. 1A-C). Ts65Dn mice treated with EGCG (Ts65Dn+EGCG) exhibited a 

significantly higher femoral BMD compared to Ts65Dn mice (0.038 ± 0.001 vs. 0.034 ± 0.001, p 

< 0.05), and similar to the genetic rescue, no effects were observed on mandible or skull BMD in 

Ts65Dn mice treated with postnatal EGCG (Supplemental Table 2). Treatment of euploid 

animals with EGCG did not have any effect on femur, skull, or mandible BMD (Supplemental 

Table 2).  

 EGCG treatment showed a positive impact on the Ts65Dn trabecular microarchitecture.  

Femurs from Ts65Dn+EGCG mice exhibited a significantly higher percent trabecular bone 
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volume, trabecular number, and trabecular thickness when compared to Ts65Dn mice (Fig. 3A, 

B, D), and were rescued to euploid levels. Additionally, treatment of euploid animals with 

EGCG did not have a significant impact on trabecular bone microarchitecture when compared to 

euploid animals (Fig. 3A-D).  Unlike what was observed in trabecular bone, treatment with ~9 

mg/kg/day EGCG for only 3 weeks did not correct the cortical bone phenotype observed in 

Ts65Dn mice (Fig. 3E,F). 

 

EGCG treatment increases mineralization rate in Ts65Dn femurs with limited impact on 

strength 

EGCG treatment of Ts65Dn mice led to a significant increase in mineral apposition rate 

(MAR) when compared to Ts65Dn mice but did not reach euploid levels in the cortical bone of 

the midshaft (Table 2). Despite significantly increasing MAR, EGCG treatment did not 

significantly increase overall bone formation rate (BFR) in the cortical bone of Ts65Dn mice. 

EGCG treatment had no effect on MS/BS, MAR, or BFR in the midshaft of euploid animals. 

Treatment of Ts65Dn mice with ~9 mg/kg/day EGCG led to a normalization of BV/TV (Table 

2). Treatment with EGCG for 3 weeks also increased mineralizing surface (MS/BS), mineral 

apposition rate (MAR), and bone formation rate (BFR) in the trabecular bone of the distal femur 

in Ts65Dn mice, but only MAR was returned to euploid levels (Table 2), suggesting that EGCG 

treatment positively effects osteoblast number and activity in the Ts65Dn distal femur. EGCG 

treatment also led to a significant decrease in osteoclast number and activity in the trabecular 

bone of Ts65Dn mice but these values were not completely rescued to euploid levels at the 

~9mg/kg/day treatment level. Treatment of euploid mice with EGCG did not affect the 

mineralization properties or the cellular composition/activity in the distal femur. Ts65Dn mice 

treated with EGCG exhibited a significant increase in bone toughness when compared to Ts65Dn 
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mice suggesting that, similar to what was observed in Ts65Dn, Dyrk1a+/- mice, EGCG treatment 

positively impacted the material properties of the bone (Supplemental Table 3).  Other 

mechanical and material properties of the bone were not improved in Ts65Dn mice with a 3 

week, ~9mg/kg/day EGCG treatment. EGCG treatment did not significantly affect the 

mechanical properties of the euploid femur. 

 

DYRK1A Activity in the Femur after Treatment with 9mg/kg/day EGCG 

In Ts65Dn mice treated with water, DYRK1A kinase activity was 1.53 fold that of 

euploid controls (p=0.24) in protein isolated from 6 week old femurs.  The DYRK1A kinase 

activity of Ts65Dn mice treated with ~9 mg/kg/day EGCG was 1.25 fold of euploid levels (p = 

0.33).  
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DISCUSSION  

Despite knowing that trisomy of human chromosome 21 causes DS, it is not clear how 

three copies of >300 genes affects the myriad phenotypes associated with the syndrome. Though 

it was once hypothesized that a single critical chromosomal region influenced all major Trisomy 

21 phenotypes, mouse models and advanced molecular analyses point to an individual gene or a 

small group of genes that may be important in a single or multiple DS phenotypes (23, 24).  

Other experiments using mouse models of DS have confirmed this recent paradigm shift 

showing the impact of one or two trisomic genes on specific well-defined DS phenotypes (25-

29).   It has been hypothesized that trisomic DYRK1A contributes to the development of a 

number of DS phenotypes including cognitive impairment, Alzheimer’s disease, and skeletal 

anomalies (20, 30, 31). Our results indicate that three copies of Dyrk1a are substantially 

responsible for the postnatal establishment and maintenance of the abnormal adolescent Ts65Dn 

appendicular bone phenotype. Percent bone volume, trabecular microarchitecture, bone 

toughness and distal femur mineralizing surface, mineral apposition rate, and osteoclast number 

are all rescued to euploid levels in Ts65Dn, Dyrk1a+/- mice suggesting that three copies of 

Dyrk1a is sufficient to cause the abnormal Ts65Dn femoral phenotype.  Using the Ts65Dn 

mouse model, others have shown the importance of DYRK1A in cognitive and neurological 

phenotypes associated with DS (29). 

The association of Dyrk1a with the establishment and maintenance of the abnormal 

adolescent Ts65Dn appendicular skeleton provides a potential therapeutic target to improve the 

abnormal bone phenotype in humans with DS. Preclinical trials in mouse models have indicated 

the efficacy of drug treatment  to alleviate some behavioral and cognitive DS phenotypes in mice 

but most do not directly treat the product of a trisomic gene (32).  Treatments containing EGCG 
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have been shown to improve some cognitive deficits in trisomic mouse models and humans with 

DS, using EGCG doses of ~100 mg/kg/day and ~9 mg/kg/day, respectively (30, 33).  Our 

treatment of Ts65Dn mice for three weeks with the same concentration of EGCG used in human 

studies led to a substantial improvement in the postnatal femoral phenotype at 6 weeks of age. 

BMD, percent bone volume, and MAR were all significantly improved after EGCG treatment. 

Critical to the therapeutic potential of EGCG, only limited effects of treatment were observed in 

the bones of euploid mice.  Our parallel genetic and therapeutic data, including a slight reduction 

in DYRK1A activity in the appendicular skeletal bones, suggest that EGCG treatment affects 

DYRK1A activity in Ts65Dn mice to alleviate some appendicular skeletal abnormalities.  

Further research is necessary to determine the optimal dosage and timing of EGCG 

treatment of Ts65Dn mice to completely correct the abnormal skeleton. A higher dosage of or 

extended treatment with EGCG may be necessary to further reduce DYRK1A activity and 

correct cortical abnormalities.  Yet, Euploid,Dyrk1a+/- mice show significantly reduced percent 

bone volume, trabecular thickness, 2D cross-sectional perimeter, and ultimate force and stiffness 

as compared to euploid control mice. These phenotypes are similar to those observed in Ts65Dn 

mice and indicate that both overexpression and inhibition of Dyrk1a may negatively impact bone 

homeostasis.  Transgenic Dyrk1a overexpressing mice display neurological abnormalities as do 

Dyrk1a+/- mice (34, 35). DYRK1A overexpression and inhibition have both been shown to 

reduce Rest transcript levels that regulate pluripotency and cell fate in DS (36).  Taken together, 

these studies indicate the importance of an optimal dosage of EGCG that leads to positive 

phenotypic changes in the abnormal DS skeleton and brain, while avoiding excessive inhibition 

of DYRK1A activity. 
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We have shown that increased Dyrk1a dosage does not affect the prenatal origins of the 

abnormal appendicular skeletal phenotype in mouse models of DS (37) but does affect the 

postnatal appendicular skeleton. This study has shown that increased Dyrk1a dosage also does 

not affect Ts65Dn mandibular or skull BMD, though the morphology has similarities to that seen 

in individuals with DS (14).  Increased expression of other trisomic genes may cause small 

changes to the prenatal bone structure, and it is still unknown if increased dosage of Dyrk1a has 

a primary role in DS craniofacial morphology. 

Analysis of the cellular composition and activity in trabecular bone revealed a 

mechanism that likely explains the osteopenic bone phenotype observed in Ts65Dn mice. 

Mineralizing surface, a parameter estimating osteoblast number, and MAR/BFR are significantly 

lower in the distal femur of Ts65Dn mice suggesting the bone formation is significantly affected 

by trisomy. No differences were observed in osteoid per bone surface, an alternative measure of 

osteoblast activity, but this discrepancy is likely because osteoid per bone surface is a static 

measure at a single time point where as mineralizing surface is a dynamic measure assessing the 

process of bone formation over a 7 day time period. Furthermore, Ts65Dn mice exhibited a 

significant increase in the number of osteoclasts in the secondary spongiosa of the adolescent 

distal femur, contrary to what has been previously described in the adult Ts65Dn appendicular 

skeleton (18). It is hypothesized that the differences observed between the studies likely result 

from the analysis of bone at different stages of maturity (6 weeks vs. 12 weeks) and suggests that 

DYRK1A may play a complex role in the regulation of osteoclast number in Ts65Dn mice 

during skeletal remodeling.  Overall, the increased osteoclast number along with the reduction in 

osteoblast number and activity suggests an inherent deficiency in the maintenance of balance 
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between bone resorption and bone formation in Ts65Dn mice leading to the osteopenic 

phenotype observed at 6 weeks of age.  

The finding of decreased osteoclast number in the adolescent Ts65Dn distal femur 

suggests a novel mechanism for the role of Dyrk1a in the postnatal establishment and 

maintenance of bone. DYRK1A dosage affects cell fate and differentiation in neuronal precursors 

and embryonic stem cells (36, 38).  It is known that DYRK1A is a negative regulator of the key 

pro-osteoclastic transcription factor NFATc and thus contrary to what was found, it was 

hypothesized that increased Dyrk1a expression in the Ts65Dn femur would lead to a decrease in 

osteoclastogenesis. Analyses of other targets of the multifunctional DYRK1A kinase suggest a 

number of interactions involving DYRK1A and proteins known to affect osteoclasts (39). 

Overexpression of Dyrk1a in the brain of hyperhomocysteinemic mice leads to a significant 

increase in the phosphorylation of Erk, Mek, and Akt (40). pAkt and pErk have both been shown 

to be positive regulators of osteoclastogenesis and bone resorptive activity suggesting an 

alternative pathway by which DYRK1A may regulate osteoclasts in the Ts65Dn adolescent 

skeleton (41-43).  Alternatively, DYRK1A has been shown to directly phosphorylate cyclic 

AMP response element binding protein (CREB) a known positive regulator of osteoclast 

differentiation and function (44, 45).  

In addition to osteoclast homeostasis, angiogenesis is a critical component of bone 

development and growth.  Trisomy 21 attenuates angiogenesis through endostatin (a potent anti-

angiogenic molecule), and trisomic RCAN1 was found to suppress VEGFA (46).  Anti-

angiogenesis or inhibition of VEGF would suppresses bone formation and the enhancement of 

angiogenesis or activation of VEGF would stimulate bone formation. This suggests that a 

decrease in bone formation in DS may be caused by the attenuation of angiogenesis. It is still not 
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clear whether angiogenesis may play a role in bone homeostasis in the DS model. However, 

previous studies demonstrate EGCG suppresses angiogenesis by inhibiting the activation of HIF-

1 and VEGF expression (47). In our study, the improvement in bone volume by EGCG likely 

occurred via mechanisms which are not related to angiogenesis.  

Though our results suggest that Dyrk1a is associated with many of the abnormal skeletal 

phenotypes associated with DS, not all parameters were corrected in Ts65Dn, Dyrk1a+/- mice as 

differences in cortical bone perimeter did not reach euploid levels.  Dyrk1a RNA levels and 

DYRK1A kinase activity were not completely reduced to euploid levels in the long bones of 

Ts65Dn, Dyrk1a+/- mice. These results suggest that RNA expression and DYRK1A activity are 

variable at a given time point and that other genes found in three copies in Ts65Dn mice having a 

role in bone maintenance or cortical bone differences could be affecting the appendicular bone 

phenotype. Treatment with ~9 mg/kg/day EGCG did not significantly lower the DYRK1A 

activity level similar to that found in Ts65Dn, Dyrk1a+/- mice.  This measurement was at a static 

time point and may not have reflected the total decreased DYRK1A activity.  It may be that the 

cumulative changes in DYRK1A activity over the 3 week treatment period were enough to 

normalize some bone parameters and a higher concentration or longer treatment of EGCG will 

be needed to normalize all bone parameters and DYRK1A activity. Alternatively, a lower EGCG 

dose may positively affect skeletal phenotypes including those that were not corrected with the 

present EGCG treatment.  EGCG likely affects other proteins and cellular activities beyond those 

associated with DYRK1A. EGCG has been shown to have antioxidant activities that improve 

bone precursors (48) as well as an effect on matrix metalloproteinases that decrease osteoclast 

formation and differentiation in vitro (49).  It is entirely possible that EGCG is affecting these 

and other mechanisms in the Ts65Dn mouse model to correct appendicular skeletal 
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abnormalities. However, the limited changes in euploid mice given EGCG suggest that EGCG 

affects Dyrk1a or other trisomic genes in the Ts65Dn mouse model. 

 We have identified increased Dyrk1a gene dosage as a major contributing factor to the 

abnormal appendicular skeletal phenotype observed in adolescent Ts65Dn mice. 

Mechanistically, increased osteoclast number and a decrease in osteoblast number and activity 

cause a severe imbalance between bone resorption and formation leading to the osteopenic 

phenotype observed in Ts65Dn mice. Further research must be conducted to identify the method 

in which Dyrk1a copy number affects signaling pathways critical to osteoclast and osteoblast 

differentiation and activity to determine how trisomy for Dyrk1a causes the altered cellular 

phenotype observed in the Ts65Dn femur. Postnatal treatment of Ts65Dn mice with EGCG, a 

known inhibitor to DYRK1A, shows promising results as a therapeutic treatment for the 

abnormal DS bone phenotype. Further research will focus on extending the treatment of Ts65Dn 

mice with EGCG for longer periods of time, as well as potentially identifying an additional, but 

still non-toxic, concentration of EGCG to maximize the positive effects of this therapy on bone 

development. 
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MATERIALS AND METHODS 

Animals 

Female B6EiC3Sn a/A-Ts(1716)65Dn (Ts65Dn) mice were purchased from the Jackson 

Laboratory (Bar Harbor, ME).  B6C3F1 mice were bred by crossing B6 females with C3H males. 

Ts65Dn males were generated at Indiana University-Purdue University Indianapolis (IUPUI) by 

crossing Ts65Dn females with B6C3F1 males and identified by PCR genotyping (50). Ts65Dn 

(approximate 50% B6 and 50% C3H background with small marker [trisomic] chromosome) 

mothers generated the male mice used for the therapeutic treatment portion of this study. Only 

male mice were used due to the subfertile nature of Ts65Dn male mice and importance of 

Ts65Dn female mice in colony maintenance. Trisomic and euploid mice were aged to 3 weeks, 

at which point they were weaned from their mothers. At the time of weaning Ts65Dn and 

euploid mice were randomly assigned either water or 0.124 mg/ml EGCG for liquid consumption 

ad libitum. The mice were weighed and solutions were changed every other day for three weeks. 

Measurements of total liquid volume consumed were taken at the time of changing for the extent 

of the three week period and the total amount of liquid consumed was calculated over the span of 

treatment (Supplemental Fig. 1). For the reduction of Dyrk1a gene copy number experiment, 

Dyrk1a heterozygous mutant mice (Dyrk1a+/-) were obtained from Dr. Mariona Arbones (Institut 

de Recerca Oncologica, Barcelona, Spain). Dyrk1a+/- mice were backcrossed to B6C3F1 mice 

for 7 generations to parallel the genetic background of Ts65Dn mice. Ts65Dn females were then 

bred to Dyrk1a+/- males to generate the four groups of mice used in the study (euploid, euploid, 

Dyrk1a+/- [only 1 functional copy of Dyrk1a], Ts65Dn, and Ts65Dn, Dyrk1a+/- [2 functional 

copies of Dyrk1a]).  Mice were Ts65Dn genotyped as described above and Dyrk1a mice were 

genotyped as previously described (51). Male mice were weaned at 3 weeks of age and allowed 



18 
 

to age to 6 weeks. For both study groups, mice were injected IP at 5 weeks of age with 0.2 ml of 

0.6% Calcein green dye diluted in saline solution, as well as four days later with 0.2 ml of 1.0% 

Alizarin red dye. Three days after the Alizarin red injection mice were euthanized and weighed. 

The femur, mandible, and skull were subsequently extracted and placed in 70% ethanol and 

stored at -20°C until further use. All animal use and protocols were approved by the IACUC 

committee at IUPUI School of Science and adhere to the requirements in the NIH Guide for the 

Care and Use of Laboratory Animals. 

 

Protein Isolation, Immunoprecipitation, and Dyrk1a Kinase assay 

Six week old mice were euthanized and femurs were extracted for protein (euploid [n=6], 

Ts65Dn [n=6], Ts65Dn, Dyrk1a+/- [n=3]; and euploid + water [n=5], Ts65Dn + water [n=6], 

Ts65Dn + EGCG [n=3]). The distal and proximal femur was removed and the marrow cavity 

flushed with 1x PBS prior to being snap frozen in liquid nitrogen. Bones were ground into a 

powder in a mortar and pestle with liquid nitrogen and placed into RIPA buffer with 1x protease 

cocktail inhibitor (Roche, Indianapolis, IN). Samples were then homogenized using a portable 

rotary grinder, incubated at 4°C, and centrifuged at 10,000 rpm for ten minutes. Protein 

concentration was analyzed using a Bradford assay. A total of 300 ug protein was cleared of 

extraneous antibodies, incubated with mouse anti-DYRK1A antibody (7D10, Abnova, Taipei, 

Taiwan), and immobilized with protein-G sepharose beads overnight. The beads were washed 

and subjected to a protein kinase assay as previously described (33, 52). Briefly, beads were 

incubated with kinase buffer solution (1 x kinase buffer, 200uM Dyrktide, 100 uM ATP, and [γ-

32P]ATP (2 μCi/sample). At the same time, 2 uM harmine (a strong inhibitor of DYRK1A 

activity) was added to some samples and used as a control to ensure proper detection of 
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DYRK1A activity. Samples were incubated for 50 minutes at 30°C and the reaction was stopped 

with 1/3 vol 100mM EDTA. 10 uL of each sample was blotted onto P81 paper (samples done in 

triplicate) and washed extensively with 5% phosphoric acid. Counts were made in a Beckman 

Liquid Scintillation counter.  Relative kinase activity was determined by subtracting background 

activity from untreated and EGCG treated euploid and trisomic samples. Comparisons were 

made using euploid values as the standard.   

RNA Isolation and qPCR 

RNA was isolated from the 6-week old femur of euploid, Ts65Dn, and Ts65Dn. 

Dyrk1a+/- animals (n = 3 in each group) using the Trizol/chloroform method and cleared of 

extraneous DNA using DNAase as described in the RNA micro kit purchased from Invitrogen 

(Grand Island, NY). Briefly, femurs were extracted from mice, proximal and distal ends were 

removed, and the marrow cavity was flushed with 1x PBS.  Femurs were snap frozen in liquid 

nitrogen and kept at -80°C until processing.  Femurs were ground in liquid nitrogen using a 

sterile mortar and pestle, placed in Trizol, and further homogenized using a tissue rotary 

homogenizer. Chloroform was added to each sample to induce phase separation, and RNA was 

eluted from the aqueous phase using isopropanol. A total of 500ng RNA was converted to cDNA 

using Taqman reverse transcription reagents and quantitative PCR (qPCR) was performed using 

Dyrk1a (Target; Mm01209880_m1 and Mm00432929_m1 covering Dyrk1a exons 4-5 and 5-6, 

respectively, [NCBI Reference sequence NM_001113389.1], which correspond to exons 6-7 and 

7-8 in the Dyrk1a genomic sequence depicted in Fotaki et al. 2002) and Actb (control;  

Mm00607939_s1)  primers (Life Technologies) using the manufacturer’s instructions (TaqMan 

Gene Expression Assay, Applied Biosystems, Foster City, CA). The crossing point (Cp) values 

(done in triplicate) from each target primer were analyzed and normalized to the reference probe 
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using the Applied Biosystems 7300 Real Time PCR System and software (53). Average values 

for each primer were compared between Ts65Dn and euploid as well as Ts65Dn, Dyrk1a+/- and 

euploid samples to compute expression fold changes.  

 

Dual Energy X-ray Absorptiometry (DEXA) 

The bone mineral content of the femur was analyzed using the Lunar Piximus DEXA 

machine (PIXImus Lunar Corp., Madison, WI). The machine was calibrated prior to each use. 

The femurs were placed caudal side down on the densitometer with ultrahigh resolution (0.18 

mm x 0.18 mm) (54). Lunar Piximus 2 2.0 software was used to assess BMD, bone mineral 

content (BMC), and total bone area measurements. 

 

µCT imaging and Analysis 

 Femurs were imaged using the Skyscan 1172 µCT machine at the Indiana University 

School of Medicine and analyzed using the CTrecon and CTan softaware from Skyscan as 

previously described (15). Briefly, femurs were thawed and placed in a Styrofoam mold fitted to 

the rotating stage in the machine. Bones were scanned, and the collection of images was 

reconstructed for analysis. 3D and 2D analysis were conducted on the trabecular and cortical 

bone, respectively, to obtain the parameters addressed in the study.   

  

Tissue Processing and Histomorphometry 

The left femur was separated at the midshaft and the proximal and distal femurs were 

processed, cut, and sectioned as previously described (15). One section per femur midshaft was 

read using a D-FL Epi-Fluorescence attachment on a Nikon Eclipse 80i DIC microscope. 
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Mineralizing surface (MS) was assessed by measuring the double label perimeter (dl.P), single 

label perimeter (sl.P), and total perimeter using BioQuant software (R & M Biometrics, 

Nashville, TN; MS = (dl.P. +1/2 sl.P)/Total perimeter). Mineral apposition rate (MAR) was 

determined by measuring the distance between the two fluorochrome labels, using Image J 

(National Institute of Health, Bethesda, MD), and averaging the distance by the days between 

label application (4). MS and MAR were used to calculate bone formation rate (BFR; BFR = 

MS*MAR*365 days/ year). These measures were made at the periosteal surface of the femur 

midshaft. For dynamic analysis of the distal femur, trabecular bone was thin sectioned (4μm) 

using a rotary microtome with a tungsten-carbide knife. Dynamic analysis was carried out using 

Bioquant software as mentioned above.  For static histomorphometry of trabecular bone, 4 μm 

thin sections were deplasticized in acetone and stained for either osteoid using a modification of 

the Von Kossa/Macneal’s (VKM) tetrachrome protocol (55) or osteoclasts using a tartrate-acid 

resistant acid phosphatase (TRAP) stain (56). Osteoid surface to bone surface (OS/BS) was 

quantified using Bioquant. For TRAP staining, osteoclast surface to bone surface and osteoclast 

number per 1mm tissue were quantified using Bioquant image analysis software.  

 

Mechanical Testing 

The mechanical strength of the femur was determined by 3-point bending (57) using a 

miniature materials machine at the Indiana University School of Medicine as previously 

described (15). Briefly, femurs were thawed, placed posterior side down on the 3-point bending 

apparatus with lower supports fixed at a distance of 7 mm apart and positioned in a manner so 

the force would be applied to the midpoint of the bone. The femur was preloaded using 0.1N to 

establish contact with the bone. The displacement rate was set at 0.1 mm/sec. Once preloaded, 
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force was applied until the bone was broken.  Data was gathered by the system and Microsoft 

Excel was used to determine the ultimate load, energy to failure, and stiffness of the bone. 

Material properties were calculated as previously described (15). 

 

Statistical Analysis 

 Data were analyzed in Microsoft Excel by comparing individual groups using a standard 

2-tailed t-test and significance was denoted by p-values less than or equal to 0.05.  

 

SUPPLEMENTARY MATERIAL 

Table S1. Bone mineral density in Ts65Dn x Dyrk1a +/- offspring. 

Table S2. Bone mineral density in Ts65Dn and euploid mice treated with EGCG or water. 

Table S3.  Effects of EGCG Treatment on the Mechanical and Material Properties of the 

Ts65Dn Femur. 

Fig. S1. Weight and treatment consumption of Ts65Dn and euploid mice 
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LEGENDS TO FIGURES 

 

Figure 1:  Bone microstructure affected by Dyrk1a copy number. Trabecular structure differs 
between euploid (A), Ts65Dn (B), Ts65Dn, Dyrk1a+/- (C), and euploid, Dyrk1a+/- (D) mice as 
revealed by microCT analyses. Ts65Dn, Dyrk1a+/- mice exhibit a euploid-like percent trabecular 
bone volume (E), trabecular number (F), separation (G), and thickness (H). Cortical bone 
analysis revealed a euploid-like 2D cross-sectional area (I) but not perimeter (J) in Ts65Dn, 
Dyrk1a+/- mice. Data are reported as mean ± SEM. Significance is denoted by brackets between 
groups (p < 0.05). 
 

Figure 2: Dyrk1a copy number affects the mechanical properties of Ts65Dn bone. Ts65Dn 
mice exhibit significant reductions in ultimate force (A), stiffness (B), and energy to failure (C) 
when compared to Ts65Dn, Dyrk1a+/- and euploid mice. Quantification of the material properties 
of bone revealed significantly lower toughness (D) but normal ultimate stress (E) and modulus 
(F) in the Ts65Dn femur and toughness was rescued in the Ts65Dn, Dyrk1a+/- femur. Data 
reported as mean ± SEM; significance is denoted by brackets between groups (p < 0.05). 
 

Figure 3: Comparison of femur parameters in EGCG treated and control mice. The distal 
femur of Ts65Dn and euploid mice treated with either EGCG or water were analyzed by 
MicroCT. Ts65Dn mice treated with EGCG exhibit significantly higher percent trabecular bone 
volume (A), trabecular number  (B), no significant change in trabecular separation  (C), and 
increased trabecular thickness (D) when compared to Ts65Dn untreated mice and are not 
significantly different from euploid mice.  Treatment with EGCG had no effect on the area (E) or 
perimeter (F) in the cortical bone of the femur mid-shaft in adolescent Ts65Dn mice. EGCG 
treatment of euploid mice shows no differences from control euploid mice.  Significance is 
denoted by brackets between groups (p < 0.05). 
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TABLES 

Table 1. Histomorphometric Analysis of the Ts65Dn, Dyrk1a+/- Femur 

  Euploid Ts65Dn Ts65Dn, Dyrk1a+/- Euploid, Dyrk1a+/- 

Cortical Bone 

    MS/BS (%) 75.03 (4.47)  75.86 (4.12) 74.44 (3.99) 67.32 (4.39) 

MAR (um/day)   4.18 (0.12)   3.37 (0.27) A,B          4.47 (0.26)   4.28 (0.34) 

BFR (MAR*MS)   3.14 (0.17)   2.54 (0.23) A,B   3.37 (0.31)   2.91 (0.32) 

Trabecular Bone 

    BV/TV (%)  14.90 (0.70)  10.45 (0.55)A,B,C       13.33 (0.84) 13.06 (0.75) 

MS/BS (%) 48.89 (1.83)  34.65 (2.14)A,B 48.73 (1.61) 40.11 (6.01) 

MAR (um/day)   4.18 (0.11)    2.84 (0.20)A,B,C   4.22 (0.13)       3.51 (0.18)A,B 

BFR (MAR*MS)   2.04 (0.10) 1.09 (0.10)A,B   2.06 (0.10)      1.42 (0.23)A,B 

OS/BS (%) 18.33 (2.15)  18.08 (0.86)B,C       22.14 (1.59)    13.92 (1.53)A,B 

OcS/BS (%)   7.30 (0.35)  10.23 (0.91)A,B   7.55 (0.30)      9.81 (0.98)A,B 

Oc#/mm (n/mm)   3.17 (0.10)  3.88 (0.31)A,B   3.07 (0.14)      3.90 (0.33)A,B 

MS/BS = mineralizing surface; MAR = mineral apposition rate; BFR = bone formation rate; BV/TV = 

percent bone volume for the entire femur; OS/BS = osteoid surface/bone surface; OcS/BS = 

osteoclast surface/bone surface; Oc#/BS = number of osteoclasts/1mm bone surface. A p < 0.05 

when compared to euploid, B p < 0.05 when compared to Ts65Dn, Dyrk1a+/-. C p < 0.05 when 

compared to euploid, Dyrk1a+/-. Euploid (n=6), Ts65Dn (n=9), Ts65Dn, Dyrk1a+/- (n=8), Euploid, 

Dyrk1a+/- (n=7). Parameter values are listed as averages ± (SEM). 
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Table 2: EGCG affects the dynamic properties of the Ts65Dn femur 
 

   
Euploid 

 
Ts65Dn 

 
Ts65Dn +EGCG 

 
Euploid + EGCG 

      
Cortical Bone 

    MS/BS (%) 71.49 (2.08) 71.50 (3.50)     76.44 (4.76) 72.69 (3.21) 

MAR (um/day)   3.98 (0.23)          3.00 (0.18)A,B,C      3.41 (0.14)A,C   3.79 (0.16) 

BFR (MAR*MS)   2.79 (0.15)        2.20 (0.21)A,C  2.61 (0.22)   2.75 (0.13) 

Trabecular Bone 

    BV/TV (%) 13.52 (0.87)         9.12 (1.09)A,B,C 12.60 (0.94)C 15.27 (0.62)A 

MS/BS (%) 47.49 (1.47) 38.53 (2.08)A 43.18 (1.98)A    43.70 (1.68) 

MAR (um/day)   3.56 (0.12)         2.95 (0.14)A,B,C 3.44 (0.15)  3.61 (0.14) 

BFR (MAR*MS)   1.68 (0.04)         1.14 (0.09)A,B,C   1.49 (0.09)A  1.59 (0.08) 

OS/BS (%) 17.36 (1.43) 18.06 (2.63) 21.67 (1.86)    17.17 (1.97) 

OcS/BS )%)   6.84 (1.05)       10.87 (1.17)A,B,C   8.29 (0.67)C  6.33 (0.62) 

Oc#/BS (n/mm)   2.61 (0.26)      4.40 (0.26)A,C       3.42 (0.29)A,B.C  2.52 (0.21) 

MS/BS = mineralizing surface in the trabeculae; MAR = mineral apposition rate; BFR = bone 

formation rate; BV/TV = percent bone volume for the entire femur; Os/BS = osteoid 

surface/bone surface; OcS/BS = osteoclast surface/bone surface; Oc#/BS = number of 

osteoclasts/1mm bone surface.  A p < 0.05 when compared to euploid, B p < 0.05 when compared 

to Ts65Dn + EGCG, C p < 0.05 when compared to euploid + EGCG. Euploid (n=8), Ts65Dn (n=7), 

Ts65Dn + EGCG (n=8), euploid + EGCG (n=9). Parameter values are listed as averages ± (SEM). 
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ABBREVIATIONS 

Down syndrome (DS), bone mineral density (BMD), human chromosome 21 (Hsa 21), Dual-

specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), Epigallocatechin-3-

gallate (EGCG), Mineral apposition rate (MAR), bone formation rate (BFR), mineralization 

surface at the bone surface (MS/BS), percent bone volume over total volume (BV/TV), 

osteoclast surface (OcS/BS), osteoclast number per mm bone surface (Oc#/mm BS), osteoid 

surface/bone surface (OS/BS), and microcomputed tomography (µCT).  
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FIGURES 

Figure 1 
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Figure 2 

 
Figure 3 
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Supplemental Figure 1 

 



35 
 

SUPPLEMENTAL INFORMATION  
 
Supplemental Table 1:  Bone mineral density in Ts65Dn x Dyrk1a +/- offspring. 

  Euploid Ts65Dn Ts65Dn, Dyrk1a+/-  Euploid, Dyrk1a+/- 

Femur  0.043 (0.001) 0.034 (0.002)A,B 0.041 (0.001) 0.039 (0.002) 

Skull  0.068 (0.009)   0.057 (0.001)A   0.060 (0.002)A 0.062 (0.001)A 

Mandible  0.080 (0.001) 0.072 (0.001)A,B   0.076 (0.001)A 0.074 (0.001)A 
A p < 0.01 when compared to Euploid; B p < 0.05 when compared to Ts65Dn, Dyrk1a+/-. 
Euploid (n=6), Ts65Dn (n=9), Ts65Dn, Dyrk1a+/- (n=8), Euploid, Dyrk1a+/- (n=7). Data are 
reported as mean ± (SEM). 
 
Supplemental Table 2:  Bone mineral density in Ts65Dn and Euploid mice treated with EGCG or water. 
 
Supplemental Table 3: Effects of EGCG Treatment on the Mechanical and Material Properties of the Ts65Dn 

Femur. 

  Euploid Ts65Dn Ts65Dn + EGCG Euploid + EGCG 
  n = 10 n = 8 n = 10  n = 10 

Ultimate Load (N)  13.77 (0.93) 9.61 (1.13)A 10.93 (0.88)A 14.68 (0.50) 

Energy to Failure (mJ)    8.04 (0.71)    3.27 (0.54)A,B   4.61 (0.34)A 9.19 (0.79) 

Stiffness (N/mm) 71.49 (5.40) 54.71 (7.08)A 55.29 (4.88)A 68.17 (6.26) 

CSMI (mm4)   0.094 (0.006) 0.065 (0.005)A   0.072 (0.004)A 0.102 (0.006) 

Stress (N/mm2) 198.28 (10.15) 178.34 (15.96)  185.26 (8.71) 199.07 (8.99) 

Modulus (N/mm2) 8247 (576)   9127 (956)      8197 (595) 7319 (742) 

Toughness (mJ/m3) 14.87 (1.49)    6.82 (1.02)A,B    9.17 (0.84)A 15.74 (1.30) 

A p < 0.05 when compared to Euploid; B p < 0.05 when compared to Ts65Dn + EGCG. Data reported 
as mean ± (SEM) 

  Euploid Ts65Dn Ts65Dn + EGCG Euploid + EGCG 

Femur 0.044  (0.002)   0.034 (0.001)A,B,C 0.038 (0.002),B,C 0.045 (0.001) 

Skull 0.067 (0.001) 0.059 (0.002)B,C  0.059 (0.002),B,C 0.068 (0.001) 

Mandible 0.081 (0.001) 0.072 (0.001)B,C 0.073 (0.001)B,C 0.080 (0.001) 
A p < 0.05 when compared to Ts65Dn+EGCG; B p < 0.05 when compared to Euploid; C p < 0.05 
when compared to Euploid+EGCG.  Euploid (n=8), Ts65Dn (n=7), Ts65Dn + EGCG (n=8), Euploid 
+ EGCG (n=9).  Data reported as mean ± (SEM) 
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Supplemental Figure 1: 

 
 
Supplemental Figure 1 Weight and treatment consumption of Ts65Dn and euploid mice. Ts65Dn and 
Ts65Dn + EGCG mice weighed the same on average at 6 weeks of age (a) and consumed the same amount of 
water or EGCG during the three week treatment period (b). Treated and untreated Ts65Dn mice consumed 
significantly less fluid and weighed significantly less at 6 weeks when compared to euploid and euploid 
treated mice.  Ts65Dn + EGCG and Euploid + EGCG received a similar dosage of EGCG per day when body 
mass was taken into account (c). Brackets between groups denote a p-value < 0.05. 
 




