116 research outputs found
Unlocking Structure-Self-Assembly Relationships in Cationic Azobenzene Photosurfactants.
Azobenzene photosurfactants are light-responsive amphiphiles that have garnered significant attention for diverse applications including delivery and sorting systems, phase transfer catalysis, and foam drainage. The azobenzene chromophore changes both its polarity and conformation (trans-cis isomerization) in response to UV light, while the amphiphilic structure drives self-assembly. Detailed understanding of the inherent relationship between the molecular structure, physicochemical behavior, and micellar arrangement of azobenzene photosurfactants is critical to their usefulness. Here, we investigate the key structure-function-assembly relationships in the popular cationic alkylazobenzene trimethylammonium bromide (AzoTAB) family of photosurfactants. We show that subtle changes in the surfactant structure (alkyl tail, spacer length) can lead to large variations in the critical micelle concentration, particularly in response to light, as determined by surface tensiometry and dynamic light scattering. Small-angle neutron scattering studies also reveal the formation of more diverse micellar aggregate structures (ellipsoids, cylinders, spheres) than predicted based on simple packing parameters. The results suggest that whereas the azobenzene core resides in the effective hydrophobic segment in the trans-isomer, it forms part of the effective hydrophilic segment in the cis-isomer because of the dramatic conformational and polarity changes induced by photoisomerization. The extent of this shift in the hydrophobic-hydrophilic balance is determined by the separation between the azobenzene core and the polar head group in the molecular structure. Our findings show that judicious design of the AzoTAB structure enables selective tailoring of the surfactant properties in response to light, such that they can be exploited and controlled in a reliable fashion
Targeted design leads to tunable photoluminescence from perylene dicarboxdiimide-poly(oxyalkylene)/siloxane hybrids for luminescent solar concentrators
The chain length and branching of the organic backbone of poly(oxyalkylene)/siloxane ureasils can be used to control the placement and orientation of a covalently-grafted perylene, leading to tunable photoluminescence.</p
A reduced-order strategy for 4D-Var data assimilation
This paper presents a reduced-order approach for four-dimensional variational
data assimilation, based on a prior EO F analysis of a model trajectory. This
method implies two main advantages: a natural model-based definition of a mul
tivariate background error covariance matrix , and an important
decrease of the computational burden o f the method, due to the drastic
reduction of the dimension of the control space. % An illustration of the
feasibility and the effectiveness of this method is given in the academic
framework of twin experiments for a model of the equatorial Pacific ocean. It
is shown that the multivariate aspect of brings additional
information which substantially improves the identification procedure. Moreover
the computational cost can be decreased by one order of magnitude with regard
to the full-space 4D-Var method
Cork suberin as an additive in offset lithographic printing inks
Suberin oligomers, isolated from cork (Quercus suber L.), were used as additives in ‘Waterless’ and vegetable-oil ink formulations, in the range of 2–10% w/w. The rheological behaviour of the suberin oligomers as well as of the inks,
with and without suberin, were investigated as a function of temperature. It was shown that the addition of suberin
induces a decrease of viscosity of both inks. The tack of pristine inks, suberin oligomers and their mixtures were
determined at different temperatures: the variation of this parameter as a function of time provided information
about the drying kinetics of these formulations. The tack of the ‘Waterless’ ink was found to increase with the
introduction of suberin, whereas that of vegetable-oil based counterparts decreased. All the trends observed were
interpreted in terms of the differences in composition between the two types of inks. Preliminary printing tests were
carried out with the various suberin-containing inks.info:eu-repo/semantics/publishedVersio
Recommended from our members
Light-responsive self-assembly of a cationic azobenzene surfactant at high concentration.
The formation of high-concentration mesophases by a cationic azobenzene photosurfactant is described for the first time. Using a combination of polarised optical microscopy and small-angle X-ray scattering, optically anisotropic, self-assembled structures with long-range order are reported. The mesophases are disrupted or lost upon UV irradiation
In situ probing of surface hydrides on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy
An in situ method based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is presented for detecting surface silicon hydrides on plasma deposited hydrogenated amorphous silicon (a-Si:H) films and for determining their surface concentrations. Surface silicon hydrides are desorbed by exposing the a-Si:H films to low energy ions from a low density Ar plasma and by comparing the infrared spectrum before and after this low energy ion bombardment, the absorptions by surface hydrides can sensitively be separated from absorptions by bulk hydrides incorporated into the film. An experimental comparison with other methods that utilize isotope exchange of the surface hydrogen with deuterium showed good agreement and the advantages and disadvantages of the different methods are discussed. Furthermore, the determination of the composition of the surface hydrogen bondings on the basis of the literature data on hydrogenated crystalline silicon surfaces is presented, and quantification of the hydrogen surface coverage is discusse
A single-component photorheological fluid with light-responsive viscosity.
Viscoelastic fluids whose rheological properties are tunable with light have the potential to deliver significant impact in fields relying on a change in flow behavior, such as in-use tuning of combined efficient heat-transfer and drag-reduction agents, microfluidic flow and controlled encapsulation and release. However, simple, single-component systems must be developed to allow integration with these applications. Here, we report a single-component viscoelastic fluid, capable of a dramatic light-sensitive rheological response, from a neutral azobenzene photosurfactant, 4-hexyl-4'butyloxymonotetraethylene glycol (C6AzoOC4E4) in water. From cryo-transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS) and rheology measurements, we observe that the photosurfactant forms an entangled network of wormlike micelles in water, with a high viscosity (28 Pa s) and viscoelastic behaviour. UV irradiation of the surfactant solution creates a less dense micellar network, with some vesicle formation. As a result, the solution viscosity is reduced by four orders of magnitude (to 1.2 × 10-3 Pa s). This process is reversible and the high and low viscosity states can be cycled several times, through alternating UV and blue light irradiation
Ureasil organic-inorganic hybrids as photoactive waveguides for conjugated polyelectrolyte luminescent solar concentrators
We test the potential of resonance energy transfer to enhance the performance of conjugated copolyelectrolyte donor–acceptor luminescent solar concentrators immobilised within a photoactive organic–inorganic ureasil waveguide.</p
- …