1,639 research outputs found

    Los límites de la evaluación clínica objetiva y estructurada (ECOE)

    Get PDF

    Immobilization of Infant Fecal Microbiota and Utilization in an in vitro Colonic Fermentation Model

    Get PDF
    Bacteria isolated from infant feces were immobilized in polysaccharide gel beads (2.5% gellan gum, 0.25% xanthan gum) using a two-phase dispersion process. A 52-day continuous culture was carried out in a single-stage chemostat containing precolonized beads and fed with a medium formulated to approximate the composition of infant chyme. Different dilution rates and pH conditions were tested to simulate the proximal (PCS), transverse (TCS), and distal (DCS) colons. Immobilization preserved all nine bacterial groups tested with survival rates between 3 and 56%. After 1 week fermentation, beads were highly colonized with all populations tested (excepted Staphylococcus spp. present in low numbers), which remained stable throughout the 7.5 weeks of fermentation, with variations below 1 log unit. However, free-cell populations in the circulating liquid medium, produced by immobilized cell growth, cell-release activity from gel beads, and free-cell growth, were altered considerably by culture conditions. Compared to the stabilization period, PCS was characterized by a considerable and rapid increase in Bifidobacterium spp. concentrations (7.4 to 9.6 log CFU/mL), whereas Bifidobacterium spp., Lactobacillus spp., and Clostridium spp. concentrations decreased and Staphylococcus spp. and coliforms increased during TCS and DCS. Under pseudo-steady-state conditions, the community structure developed in the chemostat reflected the relative proportions of viable bacterial numbers and metabolites generally encountered in infant feces. This work showed that a complex microbiota such as infant fecal bacteria can be immobilized and used in a continuous in vitro intestinal fermentation model to reproduce the high bacterial concentration and bacterial diversity of the feces inoculum, at least at the genera level, with a high stability during long-term experimen

    Intrahospital transfers and the impact on nursing workload

    Full text link
    © 2017 John Wiley & Sons Ltd Aims and objectives: To determine the rate of patient moves and the impact on nurses’ time. Background: Bed shortages and strategies designed to increase patient flow have led to a global increase in patient transfers between wards. The impact of transferring patients between wards and between beds within a ward on nurses’ workload has not previously been measured. Design: A two-stage sequential study. Retrospective analysis of hospital data and a prospective observational-timing study. Methods: Secondary analysis of an administrative data set to inform the rate of ward and bed transfers (n = 34,715) was undertaken followed by an observational-timing study of nurses’ activities associated with patient transfers (n = 75). Results: Over 10,000 patients were moved 34,715 times in 1 year which equates to an average of 2.4 transfers per patient. On average, patient transfers took 42 min and bed transfers took 11 min of nurses’ time. Based on the frequency of patient moves, 11.3 full-time equivalent nurses are needed to move patients within the site hospital each month. Conclusion: Transferring patients is workload intensive on nurses’ time and should be included in nursing workload measurement systems. Relevance to clinical practice: Nurses at the site hospital spend over 1700 hr each month on activities associated with transferring patients, meaning that less time is available for nursing care

    The consequences of executive turnover

    Full text link
    The high rate of executive turnover in the healthcare industry is a major issue for health service organisations and their staff both in Australia and internationally. In the course of planning a research project examining nurse turnover at the clinical level within three Australian States/Territories, the researchers became aware of frequent executive turnover at all levels (State Department of Health, Area Health Service, hospital). Over a period of approximately 2 years there were 41 executives occupying 18 different positions, highlighting the scope of this issue in Australia. Few studies have examined the causes and consequences of this phenomenon in depth. Factors such as age, gender, education, lack of career advancement opportunities and remuneration have all been identified in the literature as important contributors to executive turnover. High turnover rates have been found to be associated with a number of negative consequences, including organisational instability, high financial costs, loss of human capital and adverse effects on staff morale and patient care. While the use of 'acting' roles may assist in filling executive positions on a temporary basis, consequences for the rest of the organisation are associated with their extended use. Steps which health services planners may take to attempt to minimise executive turnover include providing staff members with appropriate challenges and opportunities for growth and ensuring that a clear succession plan is in place to minimise the impact for the organisation and its staff. © The Author(s) 2011

    A simple derivation of Kepler's laws without solving differential equations

    Full text link
    Proceeding like Newton with a discrete time approach of motion and a geometrical representation of velocity and acceleration, we obtain Kepler's laws without solving differential equations. The difficult part of Newton's work, when it calls for non trivial properties of ellipses, is avoided by the introduction of polar coordinates. Then a simple reconsideration of Newton's figure naturally leads to en explicit expression of the velocity and to the equation of the trajectory. This derivation, which can be fully apprehended by beginners at university (or even before) can be considered as a first application of mechanical concepts to a physical problem of great historical and pedagogical interest

    Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva

    Get PDF
    Citation: Haug, J. T., Labandeira, C. C., Santiago-Blay, J. A., Haug, C., & Brown, S. (2015). Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva. Bmc Evolutionary Biology, 15, 10. doi:10.1186/s12862-015-0428-8Background: Holometabolous insects are the most diverse, speciose and ubiquitous group of multicellular organisms in terrestrial and freshwater ecosystems. The enormous evolutionary and ecological success of Holometabola has been attributed to their unique postembryonic life phases in which nonreproductive and wingless larvae differ significantly in morphology and life habits from their reproductive and mostly winged adults, separated by a resting stage, the pupa. Little is known of the evolutionary developmental mechanisms that produced the holometabolous larval condition and their Paleozoic origin based on fossils and phylogeny. Results: We provide a detailed anatomic description of a 311 million-year-old specimen, the oldest known holometabolous larva, from the Mazon Creek deposits of Illinois, U.S.A. The head is ovoidal, downwardly oriented, broadly attached to the anterior thorax, and bears possible simple eyes and antennae with insertions encircled by molting sutures; other sutures are present but often indistinct. Mouthparts are generalized, consisting of five recognizable segments: a clypeo-labral complex, mandibles, possible hypopharynx, a maxilla bearing indistinct palp-like appendages, and labium. Distinctive mandibles are robust, triangular, and dicondylic. The thorax is delineated into three, nonoverlapping regions of distinctive surface texture, each with legs of seven elements, the terminal-most bearing paired claws. The abdomen has ten segments deployed in register with overlapping tergites; the penultimate segment bears a paired, cercus-like structure. The anterior eight segments bear clawless leglets more diminutive than the thoracic legs in length and cross-sectional diameter, and inserted more ventrolaterally than ventrally on the abdominal sidewall. Conclusions: Srokalarva berthei occurred in an evolutionary developmental context likely responsible for the early macroevolutionary success of holometabolous insects. Srokalarva berthei bore head and prothoracic structures, leglet series on successive abdominal segments - in addition to comparable features on a second taxon eight million-years-younger - that indicates Hox-gene regulation of segmental and appendage patterning among earliest Holometabola. Srokalarva berthei body features suggest a caterpillar-like body plan and head structures indicating herbivory consistent with known, contemporaneous insect feeding damage on seed plants. Taxonomic resolution places Srokalarva berthei as an extinct lineage, apparently possessing features closer to neuropteroid than other holometabolous lineages

    Studying the accretion geometry of EXO 2030+375 at luminosities close to the propeller regime

    Full text link
    The Be X-ray binary EXO 2030+375 was in an extended low luminosity state during most of 2016. We observed this state with NuSTAR and Swift, supported by INTEGRAL observations as well as optical spectroscopy with the NOT. We present a comprehensive spectral and timing analysis of these data here to study the accretion geometry and investigate a possible onset of the propeller effect. The H-alpha data show that the circumstellar disk of the Be-star is still present. We measure equivalent widths similar to values found during more active phases in the past, indicating that the low-luminosity state is not simply triggered by a smaller Be disk. The NuSTAR data, taken at a 3-78 keV luminosity of ~6.8e35 erg/s (for a distance of 7.1 kpc), are well described by standard accreting pulsar models, such as an absorbed power-law with a high-energy cutoff. We find that pulsations are still clearly visible at these luminosities, indicating that accretion is continuing despite the very low mass transfer rate. In phase-resolved spectroscopy we find a peculiar variation of the photon index from ~1.5 to ~2.5 over only about 3% of the rotational period. This variation is similar to that observed with XMM-Newton at much higher luminosities. It may be connected to the accretion column passing through our line of sight. With Swift/XRT we observe luminosities as low as 1e34 erg/s during which the data quality did not allow us to search for pulsations, but the spectrum is much softer and well described by either a blackbody or soft power-law continuum. This softer spectrum might be due to the fact that accretion has been stopped by the propeller effect and we only observe the neutron star surface cooling.Comment: 11 pages, 6 figures, accepted for publication in A&A (v2 including language edits
    corecore