425 research outputs found

    Molecular biological methods for studying the gut microbiota : the EU human gut flora project

    Get PDF
    Seven European laboratories co-operated in a joint project (FAIR CT97-3035) to develop, refine and apply molecular methods towards facilitating elucidation of the complex composition of the human intestinal microflora and to devise robust methodologies for monitoring the gut flora in response to diet. An extensive database of 16S rRNA sequences for tracking intestinal bacteria was generated by sequencing the 16S rRNA genes of new faecal isolates and of clones obtained by amplification with polymerase chain reaction (PCR) on faecal DNA from subjects belonging to different age groups. The analyses indicated that the number of different species (diversity) present in the human gut increased with age. The sequence information generated, provided the basis for design of 16S rRNA-directed oligonucleotide probes to specifically detect bacteria at various levels of phylogenetic hierarchy. The probes were tested for their specificity and used in whole-cell and dot-blot hybridisations. The applicability of the developed methods was demonstrated in several studies and the major outcomes are described

    Effects of fructooligosaccharides on cecum polyamine concentration and gut maturation in early-weaned piglets

    Get PDF
    Polyamines are molecules involved in cell growth and differentiation and are produced by bacterial metabolism. However, their production and effects by the microbiota selected by fructooligosaccharides consumption are controversial. In this study, we investigated the influence of supplementation of fructooligosaccharides on the cecal polyamine production by the microflora selected, and its effect on gut maturation in newborn piglets. Twenty piglets were fed a control formula (n = 10) or a formula supplemented with fructooligosaccharides (8 g/l) (n = 10) for 13 days. Colony-forming unit’s count of cecal content was done in different media. Several intestinal development parameters were measured as well as the polyamine concentration in the cecal mucosa and cecal content. A dose-dependent study on in vitro polyamine production by fructooligosaccharides addition to the isolated cecal content was performed. Bifidogenic activity of fructooligosaccharides increased polyamine concentration in the cecal content, mainly putrescine, with no beneficial effect on gut maturation. Bifidobacterium spp. were able to produce polyamines, but they were not the most significant bacterial producer of polyamines in the cecum of piglets fed fructooligosaccharides. Bifidogenic activity of fructooligosaccharides did not lead to an increase in gut maturation in piglets of 15 days of age although polyamines were increased in the cecal content

    Design of an Activity-Based Probe for Human Neutrophil Elastase: Implementation of the Lossen Rearrangement To Induce Förster Resonance Energy Transfers.

    Get PDF
    Human neutrophil elastase is an important regulator of the immune response and plays a role in host defense mechanisms and further physiological processes. The uncontrolled activity of this serine protease may cause severe tissue alterations and impair inflammatory states. The design of an activity-based probe for human neutrophil elastase reported herein relies on a sulfonyloxyphthalimide moiety as a new type of warhead that is linker-connected to a coumarin fluorophore. The inhibitory potency of the activity-based probe was assessed against several serine and cysteine proteases, and the selectivity for human neutrophil elastase (Ki = 6.85 nM) was determined. The adequate fluorescent tag of the probe allowed for the in-gel fluorescence detection of human neutrophil elastase in the low nanomolar range. The coumarin moiety and the anthranilic acid function of the probe, produced in the course of a Lossen rearrangement, were part of two different Förster resonance energy transfers

    Gut health : Predictive biomarkers for preventive medicine and development of functional foods

    Get PDF
    There is an urgent need to develop and validate a series of biomarkers, which accurately measure and inform on how the human gut microbiota can affect human health. The human gut hosts a complex community of micro-organisms, with unique features in each individual. The functional role of this gut microbiota in health and disease is increasingly evident, but poorly understood. Comprehension of this ecosystem implies a significant challenge in the elucidation of interactions between all of its components, but promises a paradigm shift in preventive nutrition and medicine. Omics technologies for the first time offer tools of sufficient subtlety to tackle this challenge. However, these techniques must be allied with traditional skills of the microbial physiologist, which are in danger of being lost. Targeting these efforts at the identification of biomarkers associated with gut health will require access to a biobank from a pan-European or worldwide observation study, which would include samples taken with appropriate frequency from healthy individuals of different ages. This offers a pragmatic opportunity for a unique food and pharmaceutical industry collaboration

    Molecular biological methods for studying the gut microbiota:the EU human gut flora project

    Get PDF
    Seven European laboratories co-operated in a joint project (FAIR CT97-3035) to develop, refine and apply molecular methods towards facilitating elucidation of the complex composition of the human intestinal microflora and to devise robust methodologies for monitoring the gut flora in response to diet. An extensive database of 16S rRNA sequences for tracking intestinal bacteria was generated by sequencing the 16S rRNA genes of new faecal isolates and of clones obtained by amplification with polymerase chain reaction (PCR) on faecal DNA from subjects belonging to different age groups. The analyses indicated that the number of different species (diversity) present in the human gut increased with age. The sequence information generated, provided the basis for design of 16S rRNA-directed oligonucleotide probes to specifically detect bacteria at various levels of phylogenetic hierarchy. The probes were tested for their specificity and used in whole-cell and dot-blot hybridisations. The applicability of the developed methods was demonstrated in several studies and the major outcomes are described

    The Challenges in Gravitational Wave Astronomy for Space-Based Detectors

    Full text link
    The Gravitational Wave (GW) universe contains a wealth of sources which, with the proper treatment, will open up the universe as never before. By observing massive black hole binaries to high redshifts, we should begin to explore the formation process of seed black holes and track galactic evolution to the present day. Observations of extreme mass ratio inspirals will allow us to explore galactic centers in the local universe, as well as providing tests of General Relativity and constraining the value of Hubble's constant. The detection of compact binaries in our own galaxy may allow us to model stellar evolution in the Milky Way. Finally, the detection of cosmic (super)strings and a stochastic background would help us to constrain cosmological models. However, all of this depends on our ability to not only resolve sources and carry out parameter estimation, but also on our ability to define an optimal data analysis strategy. In this presentation, I will examine the challenges that lie ahead in GW astronomy for the ESA L3 Cosmic Vision mission, eLISA.Comment: 12 pages. Plenary presentation to appear in the Proceedings of the Sant Cugat Forum on Astrophysics, Sant Cugat, April 22-25, 201

    Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via Toll-like receptors 2 and 4.

    Get PDF
    BACKGROUND: Gut bacteria trigger colitis in animal models and are suspected to aggravate inflammatory bowel diseases. We have recently reported that Escherichia coli accumulates in murine ileitis and exacerbates small intestinal inflammation via Toll-like receptor (TLR) signaling. METHODOLOGY AND PRINCIPAL FINDINGS: Because knowledge on shifts in the intestinal microflora during colitis is limited, we performed a global survey of the colon flora of C57BL/10 wild-type (wt), TLR2(-/-), TLR4(-/-), and TLR2/4(-/-) mice treated for seven days with 3.5% dextrane-sulfate-sodium (DSS). As compared to wt animals, TLR2(-/-), TLR4(-/-), and TLR2/4(-/-) mice displayed reduced macroscopic signs of acute colitis and the amelioration of inflammation was associated with reduced IFN-gamma levels in mesenteric lymph nodes, lower amounts of neutrophils, and less FOXP3-positive T-cells in the colon in situ. During acute colitis E. coli increased in wt and TLR-deficient mice (P<0.05), but the final numbers reached were significantly lower in TLR2(-/-), TLR4(-/-) and TLR2/4(-/-) animals, as compared to wt controls (P<0.01). Concentrations of Bacteroides/ Prevotella spp., and enterococci did not increase during colitis, but their numbers were significantly reduced in the colon of DSS-treated TLR2/4(-/-) animals (P<0.01). Numbers of lactobacilli and clostridia remained unaffected by colitis, irrespective of the TLR-genotype of mice. Culture-independent molecular analyses confirmed the microflora shifts towards enterobacteria during colitis and showed that the gut flora composition was similar in both, healthy wt and TLR-deficient animals. CONCLUSIONS AND SIGNIFICANCE: DSS-induced colitis is characterized by a shift in the intestinal microflora towards pro-inflammatory Gram-negative bacteria. Bacterial products exacerbate acute inflammation via TLR2- and TLR4-signaling and direct the recruitment of neutrophils and regulatory T-cells to intestinal sites. E. coli may serve as a biomarker for colitis severity and DSS-induced barrier damage seems to be a valuable model to further identify bacterial factors involved in maintaining intestinal homeostasis and to test therapeutic interventions based upon anti-TLR strategies

    Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk-derived oligosaccharides and Bifidobacterium animalis subsp. lactis CNCM I-3446.

    Get PDF
    Non-digestible milk oligosaccharides were proposed as receptor decoys for pathogens and as nutrients for beneficial gut commensals like bifidobacteria. Bovine milk contains oligosaccharides, some of which are structurally identical or similar to those found in human milk. In a controlled, randomized double-blinded clinical trial we tested the effect of feeding a formula supplemented with a mixture of bovine milk-derived oligosaccharides (BMOS) generated from whey permeate, containing galacto-oligosaccharides and 3'- and 6'-sialyllactose, and the probiotic Bifidobacterium animalis subsp. lactis (B. lactis) strain CNCM I-3446. Breastfed infants served as reference group. Compared with a non-supplemented control formula, the test formula showed a similar tolerability and supported a similar growth in healthy newborns followed for 12 weeks. The control, but not the test group, differed from the breast-fed reference group by a higher faecal pH and a significantly higher diversity of the faecal microbiota. In the test group the probiotic B. lactis increased by 100-fold in the stool and was detected in all supplemented infants. BMOS stimulated a marked shift to a bifidobacterium-dominated faecal microbiota via increases in endogenous bifidobacteria (B. longum, B. breve, B. bifidum, B. pseudocatenulatum)
    corecore