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ABSTRACT  

Human neutrophil elastase is an important regulator of the immune response and plays a role 

in host defense mechanisms and further physiological processes. The uncontrolled activity of this 

serine protease may cause severe tissue alterations and impair inflammatory states. The design of 

an activity-based probe for human neutrophil elastase reported herein relies on a 

sulfonyloxyphthalimide moiety as a new type of warhead which was linker-connected to a 

coumarin fluorophore. The inhibitory potency of the activity-based probe was assessed against 

several serine and cysteine proteases and selectivity for human neutrophil elastase (Ki = 6.85 

nM) was determined. The adequate fluorescent tag of the probe allowed for the in-gel 

fluorescence detection of human neutrophil elastase in the low nanomolar range. The coumarin 

moiety and the anthranilic acid function of the probe, produced in the course of a Lossen 

rearrangement, were part of two different Förster resonance energy transfers.  
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INTRODUCTION 

Human neutrophil elastase (HNE) belongs to the chymotrypsin family of serine proteases and 

is primarily localized in the azurophilic granules and released upon stimulation of the 

polymorphonuclear neutrophils. HNE has a shallow S1 pocket resulting in a primary substrate 

specificity for small aliphatic residues, e.g. of alanine, isoleucine or valine, in the P1 position of 

the substrate. As a serine protease, HNE cleaves its substrates following an acyl transfer 

mechanism.1 HNE exhibits a broad substrate specificity. It cleaves fibrous elastin, a highly 

elastic protein in connective tissues, as well as fibronectin, laminin and collagens. Besides these 

extracellular matrix proteins, HNE degrades a variety of plasma proteins, activates other 

proteases or deactivates their endogenous inhibitors and liberates growth factors.1 

 HNE participates in host defense against microbial pathogens due to its capability of 

cleaving outer membrane proteins of Gram-negative bacteria. A fusion of azurophilic granules 

with vacuoles carrying phagocytosed bacteria leads to the formation of phagolysosomes, the site 

of pathogen clearance.1 In addition to intracellular defense mechanisms, HNE exerts an 

extracellular antimicrobial activity. It serves as a component of the neutrophil extracellular traps, 

a network of chromatin and granule proteins, which is actively secreted by neutrophils.1,2 

In pathophysiological conditions, a deleterious effect may result from the extended tissue 

destruction catalyzed by HNE. Upon neutrophil activation at inflammatory sites, HNE is 

abundantly released into the intercellular space, thereby activating proinflammatory mediators 

and recruiting further neutrophils. Thus, the out-of-balance activity of HNE contributes to the 

onset and progression of several inflammatory disorders, among them chronic obstructive 

pulmonary disease, respiratory distress syndrome (ARDS), acute lung injury (ALI), cystic 

fibrosis and rheumatoid arthritis.1 
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 5

Upon neutrophil activation by cytokines, chemoattractants or bacterial lipopolysaccharides, 

HNE is secreted into the extracellular space, and a fraction of the proteolytically active enzyme 

remains associated with the outer surface of the plasma membrane of neutrophils. In particular, 

the lipid leukotriene B4 (LTB4) is known to efficiently induce both cell surface presentation of 

HNE and HNE release into the environment. The activation of the LTB4-HNE axis can promote 

the cleavage of adhesion molecules and drive remote organ damage.3  

Potent and selective HNE inhibitors could prove therapeutically useful to reduce or treat HNE-

dependent disorders. Sivelestat has reached the market for the treatment of ALI/ARDS in Japan 

and South Korea. Sivelestat has been reported to interact with HNE in a substrate-like manner. 

The drug’s ester bond undergoes an enzymatic cleavage, a pivaloyl residue is transferred to the 

active site serine and the resulting acyl enzyme is proposed to undergo hydrolysis.4 Other 

inhibitors of HNE comprise, e.g. peptidic trifluoromethyl ketones and phosphonates,5  4H-3,1-

benzoxazin-ones,6 azetidine-2,4-diones and saccharines,7 kojic acid derivatives,8 cyanobacterial 

cyclic peptides and depsipeptides.9 Several classes of structurally-diverse heterocyclic HNE 

inhibitors, including 2-pyridones (e.g. AZD9668) and 3,4-dihydropyrimidin-2(1H)-ones (e.g. 

BAY-678), have been reported.1  

Due to the protease’s involvement in several diseases and its role as a pathogenic mediator in 

pulmonary disorders, HNE inhibition has become an important pharmaceutical option. Aside its 

role as a drug target, HNE-generated fragments of elastin and, recently, HNE itself have been 

described to be biomarkers for certain elastase-related conditions.10 Moreover, activity-based 

probes (ABPs) for HNE are considered to be valuable for the detection and detailed investigation 

of this protease. In general, ABPs for serine proteases have emerged as powerful tools in life 

science.11 ABPs enlarge the repertoire of methods, of which Western blotting is particularly 
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important, for detecting a certain protein. ABPs are active site-directed compounds and can 

selectively visualize the enzyme of interest in complex biological samples. Different 

electrophilic structures have been employed as warheads for the assembly of ABPs for HNE, i.e. 

isocoumarins,12 sulfonyl fluorides,13 azetidine-2,4-diones,14 and phosphonates.15 

Förster resonance energy transfer (FRET) constitutes a powerful tool for the visualization of 

protein activities.16 In the present study, we conducted the design, synthesis, photophysical and 

biological evaluation of a fluorescent ABP for HNE equipped with a sulfonyloxyphthalimide 

moiety. We demonstrate that this warhead is capable to trigger appropriate FRET signals to 

study the enzyme-probe interaction. 

 

MATERIALS AND METHODS 

General. Melting points were determined on a Büchi 50 oil bath apparatus. Thin layer 

chromatography was performed using Merck aluminium sheets coated with silica gel 60 F254. 

NMR spectra were recorded using Bruker Avance III-600 MHz and Bruker Avance DRX-500 

MHz instruments. LC-DAD chromatograms and ESI-MS spectra were recorded on an Agilent 

1100 HPLC system with an Applied Biosystems API-2000 mass spectrometer. HRMS was 

performed on a microTOF-Q mass spectrometer (Bruker, Köln, Germany) with ESI-source 

coupled with a HPLC Dionex Ultimate 3000 (Thermo Scientific, Braunschweig, Germany) using 

a EC50/2 Nucleodur C18 Gracity 3 µm column (Macherey-Nagel, Düren, Germany). A volume 

of one µL of a sample solution (1.0 mg/mL) was injected. Mobile phase was a mixture of 2 mM 

aqueous ammonium acetate solution and acetonitrile. Elution was performed from 90:10 up to 

0:100 in 9 min, 0:100 for 5 min. Elemental analysis was performed with a vario MICRO 
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 7

apparatus. Absorption spectra were recorded on Varian Cary 50 Bio, emission spectra on a 

Monaco Safas spectrofluorometer flx.  

General Enzymatic Methods. Enzyme activities were assayed spectrophotometrically on a 

Varian Cary 50 Bio or on a Varian Cary 100 Bio device, respectively. Fluorometric assays were 

monitored on a FLUOstar Optima plate reader from BMG Labtech (Offenburg, Germany) in 96 

well plates. FRET kinetics was monitored on a Monaco Safas spectrofluorometer flx. HNE, PPE, 

human thrombin and human cathepsin B were obtained from Calbiochem (Darmstadt, Germany), 

bovine chymotrypsin, bovine factor Xa and bovine trypsin from Sigma Aldrich, Germany, and 

human cathepsin L from Enzo Life Science (Lörrach, Germany). MeOSuc-Ala-Ala-Pro-Val-

pNA was purchased from Calbiochem (Darmstadt, Germany), Suc-Ala-Ala-Pro-Phe-pNA, Z-

Gly-Gly-Arg-AMC, Boc-Ile-Glu-Gly-Arg-AMC, Suc-Ala-Ala-Pro-Arg-pNA, Z-Arg-Arg-pNA, 

Z-Phe-Arg-pNA were from Bachem (Bubendorf, Switzerland). Reactions were monitored for 60 

min unless stated otherwise. Experiments were performed in duplicate with five different 

inhibitor concentrations. 

Enzyme Inhibition Assays. Human Neutrophil Elastase.
17 Assay buffer was 50 mM sodium 

phosphate buffer containing 500 mM NaCl, pH 7.8. An enzyme stock solution of 50 µg/mL was 

prepared in 100 mM sodium acetate buffer, pH 5.5. An aliquot was kept at 0°C and diluted with 

assay buffer directly before the measurement. A 50 mM stock solution of the chromogenic 

substrate MeOSuc-Ala-Ala-Pro-Val-pNA in DMSO was diluted with assay buffer containing 

10% DMSO. The final concentrations were as follows: substrate, 100 µM (= 1.85 × Km); DMSO, 

1.5%; HNE, 35 ng/mL. Into a cuvette containing 890 µL assay buffer, 10 µL inhibitor solution in 

DMSO and 50 µL substrate solution were added and thoroughly mixed. The reaction was 

performed at 25 °C, initiated by adding 50 µL of the enzyme solution and monitored at 405 nm.  
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 8

Porcine Pancreatic Elastase.
 Assay buffer was 50 mM sodium phosphate buffer containing 

500 mM NaCl, pH 7.8. An enzyme stock solution of 100 U/mL was prepared in 100 mM sodium 

acetate buffer, pH 5.5. An aliquot was kept at 0°C and diluted with assay buffer directly before 

the measurement. A 50 mM stock solution of the chromogenic substrate MeOSuc-Ala-Ala-Pro-

Val-pNA was prepared in DMSO and diluted with assay buffer containing 10% DMSO. In 

accordance to literature,18 a Km value greater than 1000 µM was determined with 18 different 

substrate concentrations in triplicate measurements. For the inhibition assay, the final 

concentrations were as follows: substrate, 100 µM (<< Km); DMSO, 1.5%; PPE, 0.01 U/mL. Into 

a cuvette containing 890 µL assay buffer, 10 µL inhibitor solution in DMSO and 50 µL substrate 

solution were added and thoroughly mixed. The reaction was performed at 25 °C, initiated by 

adding 50 µL of the enzyme solution and monitored at 405 nm. 

Bovine Chymotrypsin.
19 Assay buffer was 20 mM Tris-HCl buffer containing 150 mM NaCl, 

pH 8.4. An enzyme stock solution of 1 mg/mL was prepared in 1 mM aqueous HCl, diluted with 

assay buffer and kept at 0°C. A 40 mM stock solution of chromogenic substrate Suc-Ala-Ala-

Pro-Phe-pNA was prepared in DMSO and diluted with assay buffer containing 10% DMSO. The 

final concentrations were as follows: substrate, 200 µM (= 2.68 × Km);20 DMSO, 6%; 

chymotrypsin, 50 ng/mL. Into a cuvette containing 845 µL assay buffer, 55 µL inhibitor solution 

in DMSO and 50 µL 4 mM substrate solution were added and thoroughly mixed. The reaction 

was performed at 25 °C, initiated by adding 50 µL of the enzyme solution and monitored at 405 

nm.  

Human Thrombin.
21 Assay buffer was 50 mM Tris–HCl containing 150 mM NaCl, pH 8.0. 

The enzyme stock solution (10000 U/mL) was prepared in water, diluted with assay buffer and 

kept at 0°C. A 10 mM stock solution of the fluorogenic substrate Z-Gly-Gly-Arg-AMC in 
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 9

DMSO was diluted with assay buffer. The final concentrations were as follows: substrate, 40 µM 

(= 1.00 × Km); DMSO, 6%; thrombin, 1.5 U/mL. Into each well containing 173.8 µL assay 

buffer, 11.2 µL inhibitor solution in DMSO and 10 µL substrate solution were added and 

thoroughly mixed. The reaction was performed at 25 °C, initiated by adding 5 µL of the enzyme 

solution and monitored with an excitation wavelength of 340 nm and emission wavelength of 

460 nm.  

Bovine Factor Xa.
22 Assay buffer was 50 mM Tris-HCl containing 100 mM NaCl and 10 mM 

CaCl2, pH 8.0. The enzyme stock solution (1 U/µL) was prepared in water, diluted with assay 

buffer (1:50) and kept at 0°C. A 20 mM stock solution of fluorogenic substrate Boc-Ile-Glu-Gly-

Arg-AMC · AcOH in DMSO was diluted with assay buffer. The final concentrations were as 

follows: substrate, 100 µM (= 1.69 × Km); DMSO, 6%; factor Xa, 0.5 U/mL. Into each well 

containing 174 µL assay buffer, 11 µL inhibitor solution in DMSO and 10 µL substrate solution 

were added and thoroughly mixed. The reaction was performed at 25 °C, initiated by adding 5 

µL of the enzyme solution and monitored over 45 min with an excitation wavelength of 340 nm 

and emission wavelength of 460 nm.  

Bovine Trypsin.
23 Assay buffer was 20 mM Tris-HCl containing 150 mM NaCl, pH 8.4. The 

trypsin stock solution (10 µg/mL) was prepared in 1 mM HCl, diluted with assay buffer and kept 

at 0°C. A 40 mM stock solution of the chromogenic substrate Suc-Ala-Ala-Pro-Arg-pNA in 

DMSO was diluted with assay buffer. The final concentrations were as follows: substrate, 200 

µM (= 2.70 × Km); DMSO, 6%; bovine trypsin, 40 ng/mL. Into a cuvette containing 845 µL 

assay buffer, 50 µL 4 mM substrate solution and 55 µL inhibitor solution in DMSO were added 

and thoroughly mixed. The reaction was performed at 25 °C, initiated by adding 50 µL of the 

enzyme solution and monitored at 405 nm.  
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 10

Human Cathepsin B.
24 Assay buffer was 100 mM sodium phosphate buffer, containing 100 

mM NaCl, 5 mM EDTA and 0.01% Brij 35, pH 6.0. An enzyme stock solution of 1.81 mg/mL in 

20 mM sodium acetate buffer containing 1 mM EDTA, pH 5.0, was diluted 1:500 with assay 

buffer containing 5 mM DTT and incubated for 30 min at 37 °C and kept at 0°C. A 100 mM 

stock solution of the chromogenic substrate Z-Arg-Arg-pNA was prepared with DMSO. The 

final concentrations were as follows: substrate, 500 µM (= 0.45 × Km); DMSO, 2%; cathepsin B, 

72 ng/mL. Into a cuvette containing 960 µL assay buffer, 15 µL inhibitor solution in DMSO and 

5 µL of the substrate solution were added and thoroughly mixed. The reaction was performed at 

37 °C, initiated by adding 20 µL of the enzyme solution and monitored at 405 nm. 

Human Cathepsin L.
24 Assay buffer was 100 mM sodium phosphate buffer containing 100 

mM NaCl, 5 mM EDTA and 0.01% Brij 35, pH 6.0. An enzyme stock solution of 135 µg/mL in 

20 mM malonate buffer containing 400 mM NaCl and 1 mM EDTA, pH 5.5, was diluted 1:100 

with assay buffer containing 5 mM DTT, incubated for 30 min at 37 °C and kept at 0°C. A 10 

mM stock solution of the chromogenic substrate Z-Phe-Arg-pNA was prepared with DMSO. The 

final concentrations were as follows: substrate, 100 µM (= 5.88 × Km); DMSO, 2%; cathepsin L, 

54 ng/mL. Into a cuvette containing 940 µL assay buffer, 10 µL inhibitor solution in DMSO and 

10 µL of the substrate solution were added and thoroughly mixed. The reaction was performed at 

37 °C, initiated by adding 20 µL of the enzyme solution and monitored at 405 nm. 

FRET Kinetics with Porcine Pancreatic Elastase. λex 320 nm FRET. The reactions of probe 

8 with PPE were followed by monitoring the fluorescence-resonance energy transfer from the 

anthranilic acid fluorophore to the coumarin 343 by setting the excitation wavelength for 

anthranilic acid at λex= 320 nm and the emission wavelength of coumarin 343 at λem = 492 nm. 

A photomultiplier tube (PMT) value of 300 V was adjusted. The experiments were performed at 
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 11

25°C for 60 min. Buffer was 50 mM sodium phosphate buffer and 500 mM NaCl, pH 7.8. A PPE 

solution was prepared in 10 mM sodium acetate buffer, pH 5.5. Probe 8 was dissolved DMSO. 

The final concentration of PPE was 3.1 U/mL and the final concentration of DMSO was 1.5%. 

Buffer, DMSO and probe 8 were placed in a cuvette. It was thoroughly mixed and the reaction 

was initiated by adding the enzyme. Experiments were performed in duplicate with five different 

inhibitor concentrations.  

λex 285 nm FRET. The experiments were performed as described above with the following 

exception. The reactions of 8 with PPE were followed over 60 min or 8 hours by monitoring a 

possible FRET from a tryptophan fluorophore of PPE to the coumarin 343 by setting the 

excitation wavelength for tryptophan at λex= 285 nm and the emission wavelength of coumarin 

343 at λem = 492 nm.  

Detection of Human Neutrophil Elastase with the Activity-based Probe 8. Estimation of 

the Detection Limit of the Probe. A 200 µM solution of the activity-based probe 8 was prepared 

in DMSO. A HNE solution of 267 µg/mL was prepared in 100 mM sodium acetate buffer, pH 

5.5. Elastase assay buffer (50 mM sodium phosphate buffer containing 500 mM NaCl, pH 7.8) 

was used to prepare mixtures of a total volume of 40 µL containing 2.5 µM of probe 8, 2.5% 

DMSO and different concentration of HNE (11 ng/µL, 18 ng/µL, 25 ng/µL, 33 ng/µL, 40 ng/µL) 

(Fig. 5A). These mixtures were incubated at 25 °C for 20 min. To 18 µL of each mixture, 6 µL 

of reducing 4× Roti-Load 1 buffer (Roth, Karlsruhe, Germany) was added followed by heating at 

95 °C for 5 min. After centrifugation (14,000 × g, 5 min), volumes of 20 µL were loaded and 

proteins were separated by SDS-PAGE. Gels (13%) were run in Tris/glycine/SDS buffer (Tris 25 

mM, glycine 192 mM, SDS 0.1%). The enzyme was visualized by in-gel fluorescence detection 

using a Typhoon Trio scanner (GE Healthcare) and applying a setting which is most adequate for 
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 12

the coumarin fluorophore, i.e. the 488-nm blue laser and an emission 520-nm band-pass filter 

(520 BP 40). A PMT value of 600 V and a pixel size scanning resolution of 100 µm were 

adjusted. Prestained marker proteins (PageRuler Plus Prestained Protein Ladder, ThermoFisher 

Scientific, Waltham, MA) served as standards. 

Competition Experiment. A 400 µM solution of sivelestat (Sigma Aldrich, Germany) was 

prepared in DMSO. Two mixtures of a total volume of 39.5 µL containing HNE in both samples 

in the presence and absence of sivelestat in one sample were prepared in elastase assay buffer 

and incubated at 25 °C for 5 min. A volume of 0.5 µL of probe 8 was added to both samples to 

reach the following concentrations, 2.5 µM of probe 8, 2.5% DMSO, 40 ng/µL of HNE and 5.0 

µM of sivelestat. These mixtures were incubated at 25 °C for 20 min. SDS-PAGE and in-gel 

fluorescence detection (Fig. 5B) were performed as described above.  

Survey of the Probe’s Selectivity. Lysate from human embryonic kidney (HEK) 293 cells was 

received as described.25 Four mixtures were prepared in elastase assay buffer, all containing 

probe 8. A volume of 4.9 µL of HEK cell lysate, or 6.0 µL of HNE (twice), or 4.9 µL HEK cell 

lysate spiked with 6.0 µL of HNE were added. The mixtures were incubated at 25 °C for 20 min. 

After incubation, 4.9 µL of HEK cell lysate was added to one HNE sample. In the final volume 

of 40 µL, the mixtures contained 2.5 µM of probe 8, 2.5% DMSO, 40 ng/µL of HNE and 0.60 

µg/µL of HEK cell lysate. SDS-PAGE and in-gel fluorescence detection (Fig. 5C) were 

performed as described above.  

Detection of endogenous HNE. Human granulocytes were isolated from peripheral blood of 

healthy donors using density gradient centrifugation (Histopaque, Sigma Aldrich). For the 

preparation of the cell lysates, purified granulocytes (40 mio cells) were lysed in 100 µL of lysis 

buffer (1% Triton X-100 in phosphate buffer saline, pH 7.4). Cell debris was removed by 
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centrifugation (12,000 g, 10 min). Two mixtures of a total volume of 19.75 µL containing cell 

lysate in both samples in the presence and absence of sivelestat were prepared in elastase assay 

buffer and incubated at 25 °C for 5 min. A volume of 0.25 µL of probe 8 was added to both 

samples to obtain the following concentrations, 2.5 µM of probe 8, 2.5% DMSO, lysate of 6.12 

mio cells and 5.0 µM of sivelestat. The mixtures were incubated at 25 °C for 20 min. SDS-

PAGE and in-gel fluorescence detection (Fig. 6) were performed as described above. 

Colloidal Coomassie G-250 Staining. Proteins were stained over night with PageBlue Protein 

Staining Solution (ThermoFisher Scientific, Waltham, MA). Gels were captured with a G:BOX 

F3 Gel Documentation System (Syngene, Cambridge, UK) using a visible light converter screen 

with the UV transilluminator (Figures 5D and 6B). 

 

RESULTS AND DISCUSSION 

Sulfonyloxyphthalimides have been reported as efficient inactivators for HNE and other serine 

proteases.26-28 According to the mechanism depicted in Scheme 1,26 the protease-inhibitor 

interaction involves a nucleophilic attack of the active-site serine residue at the carbonyl carbon 

leading to an opening of the heterocyclic ring and a subsequent Lossen rearrangement of the O-

sulfonyl hydroxamic acid intermediate.26,29,30 If the resulting isocyanate is trapped by water, the 

acyl enzyme undergoes slow hydrolysis and the enzymatic activity might be recovered. The 

isocyanate can alternatively react with a second, adjacent nucleophile from the protein matrix, 

e.g. with His-57 of HNE. In fact, the efficacy of such enzyme-activated inhibitors relies on the 

initially formed acyl enzyme, which keeps the isocyanate tethered at the active site and facilitates 

a second covalent attachment, leading to irreversible inactivation. This Lossen-based reactivity 

of low-molecular weight compounds bearing the cyclic CO-N(OSO2Alk)-CO motif towards 
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serine proteases has also been shown for succinimides,31,32  dihydrouracils,33 and related 

heterocycles.29 The mechanism of inactivation has been established by 13C NMR studies,31 and 

fluorescence spectroscopy.26  

 

 

Scheme 1. Interaction between Sulfonyloxyphthalimides and Serine Proteases 
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For the design of a new type of activity-based probes for HNE, we considered the formation of 

anthranilic acid derivatives (Scheme 1) in the course of the enzyme-inhibitor interaction. In order 

to devise a possible FRET sequence from the protein’s tryptophan residues via anthranilic acid to 

a suitable fluorescent reporter, we decided to incorporate coumarin 343 into the ABP for HNE. 

Coumarins with donor groups at the position 7, such as coumarin 343, represent a widely used 
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class of fluorescent dyes. A small molecular size, high fluorescence quantum yields and large 

Stokes shifts, as well as chemical and enzymatic stability are their favored properties.25,34 

We aimed at synthesizing a small series of linker-connected N-(mesyloxy)phthalimides 

(Scheme 2). The nitro-substituted N-hydroxyphthalimide 1 was chosen as the starting compound 

whose nitro group was reduced using Pd/C to afford compound 2. This was converted into a 

sodium salt with NaHCO3 and immediately reacted with methanesulfonyl chloride to obtain 3.35 

A strong electrophile was required for a chemical modification of the aromatic amino group of 3. 

After several unsuccessful attempts, the conversion of 3 was achieved with 4-nitrophenyl 

chloroformate. The resulting active carbamate 4 turned out to be readily suitable for the 

formation of a urea bridge to introduce different linker structures by a subsequent in situ 

coupling of 4 with various mono-Boc-protected diamines. Compounds 5a-d either contain 

alkylidene or polyethylene glycol (PEG) linkers. These four intermediates were enzymatically 

evaluated and the most promising PEG derivative 5d was selected for the generation of the final 

ABP. Removal of the Boc protecting group of 5d under acidic conditions yielded 6. This salt was 

coupled with coumarin 343 (7) in a HATU-promoted reaction to give the final probe 8 with 

coumarin 343 as fluorescence tag. 
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Scheme 2. Synthesis of Compound 8a
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a Reactions and conditions: (a) H2, Pd/C, CH3OH, rt; (b) MsCl, NaHCO3, H2O, 0-5 °C; (c) 4-

nitrophenyl chloroformate, THF, rt; (d) amine: Boc-NH-X-NH2, DIPEA, rt; (e) 4N HCl in 

dioxane, CH2Cl2, rt, 2 h; (f) coumarin 343 (7), HATU, DIPEA, DMF, rt. 
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Compound 8 was investigated as an inhibitor of HNE by means of a spectroscopic assay with 

the chromogenic substrate MeOSuc-Ala-Ala-Pro-Val-pNA (Table 1). Additionally, an estimation 

of the bioactivity of the Boc-protected building blocks 5a-d was carried out. These compounds 

showed time-dependent inhibition and the progress curves were analyzed with the slow-binding 

equation, implementing a distinct steady-state rate. From the first-order rate constants and the 

steady-rate rates, second-order rate constants for the formation of enzyme-inhibitor complexes, 

kon, and Ki values, respectively, were obtained. The corresponding analysis for the HNE 

inhibition by probe 8 is depicted in Figure 1. The first-order rate constants for the decay of the 

enzyme-inhibitor complexes, koff, were calculated from kon and Ki values (Table 1). The kinetic 

parameters of the HNE inhibition by the five compounds do not differ much. From the koff 

values, half-lives for the enzyme-inhibitor complexes between 56 min (5d) and 177 min (5b) 

were obtained. The Ki values were in the single-digit nanomolar range. As noted above, building 

block 5d bearing a PEG linker with two oxygen atoms (PEG2) was selected as the precursor for 

the final ABP (8) because of similar enzyme-inhibiting activities of 5a-d, and the envisaged 

improved water solubility of a PEG2-containing ABP. The exchange of the Boc-protecting group 

(in 5d) by the coumarin 343 moiety (in 8) did not result in a loss of inhibitory potency.  
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Table 1. Inhibition of HNE by Compounds 5a-d and 8a
 

Compound Ki (nM) kon (104 M-1s-1) koff = Ki kon (10-4 s-1) 

5a 6.83 ± 2.47 1.06 ± 0.15 0.726 

5b 4.39 ± 1.63 1.49 ± 0.20 0.654 

5c 6.81 ± 1.77 1.44 ± 0.57 0.981 

5d 5.26 ± 1.00 3.91 ± 0.58 2.06 

8 6.85 ± 0.39 2.37 ± 0.15 1.62 

 

a Enzymatic activity was determined with five different inhibitor concentrations, [I], in duplicate 

measurements. Progress curves were analyzed using the slow-binding equation [P] = vst + (vi - 

vs)(1-exp(-kobst))/kobs + d, where [P] is the product concentration, vs is the steady state rate, vi is 

the initial rate, kobs is the observed first-order rate constant and d is the offset. Values vs were 

plotted versus inhibitor concentrations [I], and Ki values were obtained by non-linear regression 

according to vs = v0/(1 + [I]/(Ki (1 + [S]/Km)), where v0 is the rate in the absence of the inhibitor. 

The standard errors refer to this non-linear regression. The kon values were obtained by linear 

regression according to kobs = [I] kon /(1+ [S]/Km) + koff. The standard errors refer to this linear 

regression. 
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Figure 1. Inhibition of HNE by compound 8. (A) The formation of para-nitroaniline from the 

chromogenic substrate MeOSuc-Ala-Ala-Pro-Val-pNA was recorded at 405 nm in the presence 

of different inhibitor concentrations (from top to bottom: 0 nM, 60 nM, 120 nM, 180 nM, 240 

nM, 300 nM). Progress curves were analyzed by non-linear regression using the slow-binding 

equation [P] = vst + (vi - vs)(1-exp(-kobst))/kobs + d, where [P] is the product concentration, vs is the 

steady-state rate, vi is the initial rate, kobs is the observed first-order rate constant, and d is the 

offset. (B) Steady-state rates vs (mean values from duplicate measurements) were plotted versus 

the inhibitor concentrations. Inset: First-order rate constants kobs (mean values from duplicate 

measurements) were plotted versus the inhibitor concentrations. The results are listed in Table 1. 

 

 

 

ABP 8 was further evaluated using different serine and cysteine proteases, all of which are 

characterized by a covalent mode of catalysis. For this purpose, activity assays with chromogenic 

or fluorogenic peptide substrates were applied (Table 2). Compound 8 caused time-independent 

inhibition with linear progress curves in case of the human enzymes thrombin, cathepsin B and 
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cathepsin L as well as the bovine enzymes chymotrypsin, factor Xa and trypsin. In contrast, 

time-dependent inactivation was observed for HNE (see above) and porcine pancreatic elastase 

(PPE). In order to quote comparable values, half maximal inhibitory concentrations, corrected by 

the substrate concentration, are given in Table 2. These data indicate the strong preference of 

ABP 8 to inhibit the target enzyme HNE. 

 

 

Table 2. Inhibition of Proteases by Probe 8a
 

Protease IC50 (1+ [S]/Km)-1 (µM) 

HNE 0.0189 ± 0.0019 

PPE 2.27 ± 0.30 

chymotrypsin 6.48 ± 0.85 

thrombin 5.87 ± 0.64 

factor Xa 18.9 ± 1.0 

trypsin > 30 

cathepsin B 9.49 ± 0.71 

cathepsin L 0.353 ± 0.116 

 

a Enzymatic activity was determined with five different inhibitor concentrations, [I], in duplicate 

measurements. The product formation within 60 min was used to determine v values, as rates of 

the reaction. IC50 values were obtained by non-linear regression using the equation v = v0/(1 + 

[I]/IC50), where v0 is the rate in the absence and v the rate in the presence of the inhibitor. Values, 

corrected by the factor (1 + [S]/Km) are given. The standard errors refer to the non-linear 

regression. 
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The photophysical properties of ABP 8 were analyzed in three solvents, i.e. CH2Cl2, CH3OH 

and H2O (Fig. 2). The spectra of 8 exhibited slight bathochromic shifts for both absorption 

maxima and emission maxima with increasing polarity of the solvent and Stokes shifts between 

34-44 nm. Thus, due to the properties of the coumarin 343 moiety, probe 8 appears to be 

qualified to act as the final fluorescence acceptor in FRET systems. 

 

 

 

Figure 2. Absorption (5 µM, 1% DMSO, solid lines) and emission (1 µM, 1% DMSO, PMT 

value of 400 V, dotted lines) spectra of compound 8 recorded in H2O (red lines), CH3OH (green 

lines) and CH2Cl2 (blue lines), respectively. Absorption and emission maxima were as follows, 

λex = 450 nm, λem = 492 nm (H2O), λex = 440 nm, λem = 484 nm (CH3OH), λex = 440 nm, 

λem = 474 nm (CH2Cl2). 
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To exploit a first FRET system, excessive PPE was incubated with ABP 8 at different 

concentrations and the reaction was followed over 60 min. Data of the first 33 min are shown in 

Figure 3. A wavelength of 320 nm was used for the excitation of anthranilic acid moieties which 

can function as the donor in an energy transfer process. The fluorescence kinetics was monitored 

with the emission wavelength of the coumarin 343 acceptor at 490 nm. The progress curves were 

analyzed by non-linear regression. In the absence of PPE, a gain in fluorescence was not 

observed for each ABP concentration (solid lines at the bottom of Fig. 3A). These findings 

clearly reflect the enzyme-catalyzed transformation of the probe. The formation of anthranilic 

acid derivative(s) was governed solely by the initial concentration of the probe 8 and the 

reactions obeyed a pseudo-first order kinetics. Accordingly, the initial rates linearly correlated 

with the concentration of the substrate, i.e. probe 8 (Fig. 3B). The product concentration at 

infinite time also depended on the initial concentration of 8. In the course of the reaction, the 

fluorescence intensity approached constant values, which, however, might result from enzyme-

bound and released anthranilic acid derivatives, both being capable to transfer energy to the 

coumarin acceptor. Although the surrounding environment of the anthranilic acid fluorophore 

changes upon hydrolysis, the constant fluorescence intensity indicate a similar behavior in the 

λex 320 nm FRET system . As depicted in Scheme 3 and supported by the λex 320 nm FRET 

experiment, ABP 8 interacts with PPE under ring opening and formation of the anthranoyl 

enzyme (9) which represents the covalently inhibited enzyme species. The consumption of 8 in 

this Lossen-type conversion is irreversible, but a fraction of the protease can recover its activity 

when 9 undergoes hydrolysis and the product of the enzyme-catalyzed conversion (10) is 

released. 
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Figure 3. Fluorescence kinetics of the interaction of probe 8 with PPE. A λex 320 nm FRET 

between two fluorophores was employed. The excitation of the anthranilic acid fluorophore at 

320 nm led to an energy transfer to the coumarin fluorophore, whose emission was detected at 

490 nm. (A) The progress curves over 33 min are shown. They were recorded in the presence of 

PPE (3.1 U/mL) and five different concentrations of 8, from top to bottom: 2.5 µM, 2.0 µM, 1.5 

µM, 1.0 µM, 0.5 µM. Reactions in the absence of PPE are shown as solid lines. Progress curves 

over 60 min were analyzed using the exponential equation FI = vi (1-exp(-kobst))/kobs + d, where 

FI is the fluorescence intensity as generated by the λex 320 nm FRET, vi is the initial rate, kobs is 

the observed first-order rate constant and d is the offset. (B) The values vi (means of two 

independent experiments) were plotted versus concentrations of probe 8. 
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Figure 4. Fluorescence kinetics of the interaction of probe 8 with PPE. A λex 285 nm FRET 

between three fluorophores was assumed. An excitation of the tryptophan fluorophore of PPE at 

285 nm would lead to the first, hypothesized energy transfer from tryptophan to the second, 

anthranilic acid fluorophore. Its excitation produced the second energy transfer to the coumarin 

fluorophore, whose emission was detected at 490 nm. (A) The progress curves over 33 min are 

shown. They were recorded in the presence of PPE (3.1 U/mL) and five different concentrations 

of 8, from top to bottom: 2.5 µM, 2.0 µM, 1.5 µM, 1.0 µM, 0.5 µM. Reactions in the absence of 

PPE are shown as solid lines. Progress curves over 60 min were analyzed using the slow-binding 

equation FI = vst + (vi - vs)(1-exp(-kobst))/kobs + d, where FI is the fluorescence intensity as 

generated by the λex 285 nm FRET, vs is the steady state rate, vi is the initial rate, kobs is the 

observed first-order rate constant and d is the offset. (B) The values vi (means of two 

independent experiments) were plotted versus concentrations of probe 8. 
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Scheme 3. Assumed FRET Systems to Study the Interaction of Probe 8 with Elastasea
 

N

O

O

OMs

NH2

CO2Ser

NH2

CO2H

490 nm 450 nm 320 nm420 nm

HO-Ser

ON O

O

ON O

O

285 nm340 nm

E

E

HO-Ser E

ON O

O

320 nm420 nm490 nm 450 nm

+

H2O

8

9

10

?

 

a A supposed λex 285 nm FRET between the enzyme’s tryptophan (excitation 285 nm) and 

coumarin 343 (emission 490 nm). A λex 320 nm FRET between the anthranilic acid moiety 

(excitation 320 nm) and coumarin 343 (emission 490 nm).  

 

 

 

Next, it was intended to comprise the tryptophan fluorescence of PPE. For the generation of a 

FRET signal, there are two tryptophan residues in a sufficient distance to the active site.36 These 

distances of about 11-12 Å were estimated by building a model of a covalent complex, see 

Supporting Information (SI, Fig. S1). For this purpose, we have modeled the active site of PPE 
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with the catalytic serine residue bound to an unsubstituted anthranoyl residue, representing a 

simplified model of complex 9 (Scheme 3). The phenyl ring of the resulting Ser195-anthranilic 

acid ester complex acts as a fluorophore that can be excited by the nearby tryptophan moieties. 

The following FRET kinetic experiments have been designed to include the excitation of 

tryptophan at 285 nm, which, in turn, might excite the anthranilic acid fluorophore, leading to the 

excitation of the coumarin moiety and the emission at 490 nm (Scheme 3). Except of the 

excitation wavelength, the λex 285 nm FRET experiment was performed under the same 

conditions as described above. We monitored a strong increase in fluorescence intensity within 

the first 15 min, which expectedly depended on the initial concentration of the probe 8 (Fig. 4A). 

A slow decrease in fluorescence intensity at the later stage of the reaction was observed. 

Accordingly, an equation for the non-linear regression of the progress curves was used which 

includes final slopes different from zero. The pseudo-first order kinetics was confirmed also for 

this process by demonstrating the linear correlation between the initial rates and the 

concentrations of probe 8 as shown in the corresponding secondary plot (Fig. 4B).  

The λex 285 nm FRET setup provided experimental support for the formation of an enzyme-

probe complex which contains the anthranilic acid fluorophore (i.e. complex 9, Scheme 3). The 

modified probe 10 was probably not recorded due to the interruption of the FRET system when 

complex 9 dissociated. Thus, the slow hydrolytic cleavage of 9 was supposed to account for the 

late decrease of the fluorescence signal. In a separate experiment, fluorescence kinetics was 

followed over 8 hours by applying the same λex 285 nm FRET setup. After reaching maximal 

fluorescence intensity, an exponential decrease was observed. The progress curves of this later 

stage were monitored and analyzed with the equation of the exponential decay, see Supporting 

Information (SI, Fig. S2). The half-live of the anthranoyl enzyme 9 which is capable of 
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producing the λex 285 nm FRET was estimated to be 3.3 hours. This value, obtained by 

fluorescence kinetics with PPE, is in the same range as the half-live of 71 min as obtained from 

inhibition kinetics with HNE. The difference is assumed to be mainly due to the origin of the 

enzyme in both experiments. The decay of this complex 9 indicates the involvement of 

tryptophan residue(s) in the first energy transfer step. These assumption is furthermore supported 

by afore-described inhibition kinetics with mesyloxyphthalimides which showed steady-state 

rates different from zero, again reflecting a slow release of the ring-opened probe and the 

simultaneous recovery of the protease. However, further experimental evidence is needed to 

clarify the involvement of tryptophan(s) in the λex 285 nm FRET system. For example, in future 

studies, the FRET efficiency might be examined with the enzyme mutated on the two tryptophan 

residues in proximity to the active site. 

The suitability of compound 8 as an activity-based probe was proved by in-gel fluorescence 

analysis of HNE (Fig. 5). HNE at different concentrations was treated with 2.5 µM of 8 for 20 

min. Following SDS-PAGE, fluorescent bands at approximately 29 kDa could be detected and 

amounts as low as 160 ng of HNE successfully visualized (lanes 1-5 in Fig. 5A). Three bands 

were observed for HNE (e.g. lane 2 in Fig. 5B, lane 2-3 in Fig. 5C). It is known that several HNE 

isoforms can be resolved by SDS-PAGE and that these catalytically active forms only differ in 

their carbohydrate content. Moreover, the self-cleavage of elastase from murine and human 

neutrophils was shown to generate variants of different catalytic activity.37 Since elastase used in 

our study was prepared from human neutrophils, we assume that the three bands correspond to 

HNE isoforms with different glycosylation patterns or are caused by autocatalytic cleavage. 

The binding mode of probe 8 in the active site of HNE was verified by a competition 

experiment (Fig. 5B). HNE was incubated for 5 min with 5 µM of the active-site directed, 
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covalent inhibitor sivelestat,4 followed by 2.5 µM of ABP 8 (lane 1 in Fig. 5B). In the control 

experiment, HNE was incubated with DMSO prior to the addition of the probe (lane 2 in Fig. 

5B). Sivelestat was able to protect HNE from a reaction with the probe as the detectable 

fluorescence at ∼29 kDa was strongly reduced. These findings confirmed the active-site directed 

interaction of 8 with HNE and indicated that surface nucleophiles of the enzyme were obviously 

not affected by probe 8. 

Furthermore, the selectivity of HNE labeling by 8 was studied as illustrated in Figures 5C and 

5D. HEK293 cell lysate was spiked with HNE, incubated with the probe, subjected to SDS-

PAGE and analyzed by fluorescence imaging. In contrast to the imaging of 600 ng of HNE (lane 

2 in Fig. 5C), amounts of 9 µg HEK cell lysate protein did not produce fluorescent bands (lane 1 

in Fig. 5C), indicating that 8 did not react with non-target proteins. As a control, the gel was 

subsequently stained with Coomassie blue (lanes 1 and 2 in Fig. 5D). We performed two spiking 

experiments (lanes 3 and 4 in Figures 5C and 5D). HEK lysate was added either after the 

incubation to the mixture of HNE and 8, or prior to the incubation. When HNE was incubated 

with 8 only, the protease has been inactivated due to reaction with 8 and, thus, became unable to 

degrade the lysate’s proteins. Therefore, the Coomassie staining of the protein mixtures in lanes 

1 and 3 (Fig. 5D) was similar. However, when HNE was simultaneously incubated with the 

lysate and 8, protein degradation occurred and the enzyme was partly protected from being 

inactivated by 8 due to the consumption of protein substrates. This led to a different protein 

pattern (lane 4 versus lane 3 in Fig. 5D) and to a slightly reduced intensity of the fluorescent 

signal of HNE (lane 4 versus lane 3 in Fig. 5C). Importantly, this analysis revealed selective 

labeling of the target HNE within a mixture of excess proteins without detectable nonspecific 

interactions of 8 (lanes 3 and 4 in Fig. 5C). 
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Therefore, in the course of this study, we thought to assess the suitability of ABP 8 for 

detecting endogenous elastase. For this purpose, neutrophil granulocytes from human donors 

were purified by density gradient centrifugation and lysates were prepared by detergent (Triton 

X-100) treatment. The following analysis by gel electrophoresis of the lysate proteome revealed 

a fluorescent band at ∼29 kDa which could clearly be assigned to HNE (lane 3 in Fig. 6A). In the 

competition experiment, it was shown, that the addition of sivelestat prior to the probe 8 was able 

to abolish HNE labeling (lane 2 in Fig. 6A), again indicating that both, probe 8 and sivelestat, 

target the active site of HNE. The Coomassie blue staining (lanes 1-3 in Fig. 6B) indicated that 

the endogenous amount of HNE was not particularly prominent in the lysate. Thus, this in-lysate 

experiment even more accentuated the strong labeling capability of our activity-based probe. 
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Figure 5. Imaging of HNE with the fluorescent probe 8. (A) HNE in different concentrations (11 

– 40 ng/µL) was incubated with 2.5 µM of 8 for 20 min at 25 °C. The mixtures were subjected to 

reducing SDS-PAGE. The amounts of HNE applied to individual lanes are indicated. (B) HNE 

(40 ng/µL) was preincubated in the presence or absence of 5 µM of sivelestat (Siv) for 5 min at 

25 °C. Probe 8 (2.5 µM) was added, the mixtures were incubated for further 20 min at 25 °C and 
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subjected to reducing SDS-PAGE. (C) Lanes 1 and 2: HEK cell lysate (0.60 µg/µL) or HNE 

(40 ng/µL) were incubated for 20 min at 25 °C in the presence of 2.5 µM of 8 and subjected to 

reducing SDS-PAGE. Lanes 3 and 4: HNE (40 ng/µL) was incubated for 20 min at 25 °C in the 

presence of 2.5 µM of 8 and HEK lysate (0.60 µg/µL) was added after the incubation. A mixture 

HNE (40 ng/µL) and HEK lysate (0.60 µg/µL) were incubated in the presence of 2.5 µM of 8. 

Both mixtures were subjected to reducing SDS-PAGE. (D) After SDS-PAGE described in (C), 

the proteins in were visualized by Coomassie staining. (A-D) M, molecular mass marker. 

 

 

 

Figure 6. Imaging of endogenous HNE with probe 8. (A) HNE (40 ng/µL) and lysate of human 

polymorphonuclear leukocytes (PML), in the presence or absence of 5 µM of sivelestat (Siv), 

were incubated with 2.5 µM of 8 for 20 min at 25 °C. The mixtures were subjected to reducing 

SDS-PAGE. (B) After SDS-PAGE, the proteins in were visualized by Coomassie staining. M, 

molecular mass marker. 
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CONCLUSIONS 

In conclusion, we have developed a novel fluorescent probe for human neutrophil elastase. For 

the chemical design, a phthalimide precursor for a Lossen rearrangement was chosen. The 

Lossen rearrangement to functionalized isocyanates gives rise to a variety of inter- and 

intramolecular transformations. While it has accordingly been applied to manifold preparative 

purposes, its application for activity-based probing has been reported herein for the first time. In 

the fluorescence kinetic experiments, two FRET systems (λex 320 nm FRET and λex 285 nm 

FRET) were employed and it was shown that the observed fluorescence transfers exclusively 

arose from the interaction of the ABP with the target protease. The applicability of the probe was 

demonstrated by in-gel fluorescent detection analyses. Our probe was capable to visualize 

endogenous elastase from human neutrophils. The activity-based probe is expected to serve as a 

valuable tool compound for future investigations of elastase, a therapeutically relevant protease, 

and neutrophil-mediated proteolytic events.  
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ABBREVIATIONS 

ABP, activity-based probe; ALI, acute lung injury; ARDS, acute respiratory distress syndrome; 

DAD, diode array detection; DIPEA, diisopropylethylamine; FRET, Förster resonance energy 

transfer; HATU, O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium-hexafluorphosphat; 

HEK, human embryonic kidney; HNE, human neutrophil elastase; LTB4, leukotriene B4; PEG, 

polyethylene glycol; PMT, photomultiplier tube; pNA, para-nitroanilide; PPE, porcine 

pancreatic elastase; siv, sivelestat. 
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