282 research outputs found

    New insights into molecular mechanisms of sunitinib-associated side effects

    Get PDF
    Review[Abstract] The introduction of targeted therapy represents a major advance in the treatment of tumor progression. Targeted agents are a novel therapeutic approach developed to disrupt different cellular signaling pathways. The tyrosine kinase inhibitor sunitinib specifically blocks multiple tyrosine kinase receptors that are involved in the progression of many tumors. Sunitinib is the current standard of care in first-line treatment of advanced renal cell carcinoma, and it is approved in imatinib-intolerant and imatinib-refractory gastrointestinal stromal tumors. However, it is increasingly evident that sunitinib may display collateral effects on other proteins beyond its main target receptors, eliciting undesirable and unexpected adverse events. A better understanding of the molecular mechanisms underlying these undesirable sunitinib-associated side effects will help physicians to maximize efficacy of sunitinib and minimize adverse events. Here, we focus on new insights into molecular mechanisms that may mediate sunitinib-associated adverse events

    Global and non-global parameters of horizontal branch morphology of globular clusters

    Full text link
    The horizontal branch (HB) morphology of globular clusters (GCs) is mainly determined by metallicity. However, the fact that GCs with almost the same metallicity exhibit different HB morphologies demonstrates that at least one more parameter is needed to explain the HB morphology. It has been suggested that one of these should be a global parameter that varies from GC to GC, and the other a non-global parameter that varies within the GC. In this study we provide empirical evidence corroborating this idea. We used the photometric catalogs obtained with the Advanced Camera for Surveys (ACS) of the Hubble Space Telescope (HST) and analyse the CMDs of 74 GCs. The HB morphology of our sample of GCs has been investigated on the basis of the two new parameters L1 and L2 that measure the distance between the RGB and the coolest part of the HB, and the color extension of the HB, respectively. We find that L1 correlates with both metallicity and age, whereas L2 most strongly correlates with the mass of the hosting GC. The range of helium abundance among the stars in a GC, characterised by Delta Y and associated with the presence of multiple stellar populations, has been estimated in a few GCs to date. In these GCs we find a close relationship among Delta Y, GC mass, and L2. We conclude that age and metallicity are the main global parameters while the range of helium abundance within a GC is the main non-global parameter defining the HB morphology of Galactic GCs.Comment: 34 pages, 13 figures, accepted for publication in Ap

    miR-203 regulates cell proliferation through Its influence on Hakai expression

    Get PDF
    Gene expression is potently regulated through the action of microRNAs (miRNAs). Here, we present evidence of a miRNA regulating Hakai protein. Hakai was discovered as an E3 ubiquitin-ligase that mediates the posttranslational downregulation of E-cadherin, a major component of adherens junctions in epithelial cells and a potent tumour suppressor. Recent data have provided evidence that Hakai affects cell proliferation in an E-cadherin-independent manner, thus revealing a role for Hakai in the early stages of tumour progression. Furthermore, Hakai is highly up-regulated in human colon adenocarcinomas compared to normal tissues. However, the molecular mechanisms that regulate Hakai abundance are unknown. We identified two putative sites of miR-203 interaction on the Hakai mRNA, in its 3′-untranslated region (UTR). In several human carcinoma cell lines tested, overexpression of a miR-203 precursor (Pre-miR-203) reduced Hakai abundance, while inhibiting miR-203 by using an antisense RNA (Anti-miR-203) elevated Hakai levels. The repressive influence of miR-203 on the Hakai 3′-UTR was confirmed using heterologous reporter constructs. In keeping with Hakai's proliferative influence, Anti-miR-203 significantly increased cell number and BrdU incorporation, while Pre-miR-203 reduced these parameters. Importantly, the growth-promoting effects of anti-miR-203 required the presence of Hakai, because downregulation of Hakai by siRNA suppressed its proliferative action. Finally, in situ hybridization showed that miR-203 expression is attenuated in colon tumour tissues compared to normal colon tissues, suggesting that miR-203 could be a potential new prognostic marker and therapeutic target to explore in colon cancer. In conclusion, our findings reveal, for the first time, a post-transcriptional regulator of Hakai expression. Furthermore, by lowering Hakai abundance, miR-203 also reduces Hakai-regulated-cell division.Xunta de Galicia; 10CSA916023PRInstituto de Salud Carlos III; CA09/00116Xunta de Galicia; IPP.08-0

    Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells

    Get PDF
    Background: Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods: Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results: We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions: Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis

    Circulating miR-200c and miR-141 and outcomes in patients with breast cancer

    Get PDF
    Research article[Abstract] Background. The deregulation of microRNAs in both tumours and blood has led to the search for microRNAs to indicate the presence of cancer and predict prognosis. We hypothesize the deregulation of miR-200c/miR-141 in the whole blood can identify breast cancer (BC), and could be developed into a prognostic signature. Methods. The expression of miR-200c and miR-141 were examined in bloods (57 stage I-IV BC patients and 20 age-matched controls) by quantitative reverse-transcription PCR. The associations of circulating microRNAs with clinic and pathological characteristics were analysed. Their effects on survival were analysed by the Kaplan-Meier method and Cox regressions. Results. MiR-200c was down regulated (P < 0.0001) in the blood of BC patients, yielded an area under the ROC curve of 0.79 (90% sensitivity, 70.2% specificity) in discriminating BC from controls. Circulating miR-141 was not discriminating. MiR-200c and miR-141 in the blood of BC patients were inversely correlated (P = 0.019). The miR-200c levels were numerically higher in stage IV and tumours with lower MIB-1. MiR-141 was significantly higher in the blood of patients with stage I-III, lymph node metastasis, and HER2 negative tumours. High blood expression of miR-200c and/or low expression of miR-141 was associated with unfavourable overall survival (hazard ratio, 3.89; [95% CI: 1.28-11.85]) and progression-free survival (3.79 [1.41–10.16]) independent of age, stage and hormonal receptors. Conclusions. Circulating miR-200c and miR-141 were deregulated in BC comparing with controls. Furthermore, miR-200c and miR-141 were independent prognostic factors and associated with distinct outcomes of BC patients.Instituto de Salud Carlos III (España); PI06-154

    Glucose transporter expression and the potential role of fructose in renal cell carcinoma: a correlation with pathological parameters

    Get PDF
    [Abstract] All mammalian cells contain one or more members of the facilitative glucose transporter (GLUT) gene family. Glucose transporter membrane proteins (GLUT) regulate the movement of glucose between the extracellular and intracellular compartments, maintaining a constant supply of glucose available for metabolism. Tumor cells are highly energy-dependent, therefore GLUT overexpression is often observed. In fact, overexpression of GLUT1 has been correlated with hypoxia markers in several tumor types, including renal cell carcinoma (RCC). We retrospectively analyzed 80 paraffin-embedded RCC samples. The pattern of GLUT1-5 expression in RCC specimens was evaluated using tissue-array technology and correlated with histological tumor characteristics. Pathological parameters included tumor location, renal pelvis, vein and lymph vessel invasion, capsule breakage, histological subtype, Furhman grade, hilar invasion and tumor stage at diagnosis. The expression of five facilitative glucose transporters, GLUT1 (erythrocyte type), GLUT2 (liver type), GLUT3 (brain type), GLUT4 (muscle/fat type) and GLUT5 (small intestinal type), was semi-quantitatively analyzed. In non-parametric, Mann-Whitney U and Kruskal-Wallis tests, a significant positive correlation was consistently found between moderately differentiated RCC tissues and the expression of GLUT5 (p=0.024). Patients who had pelvic invasion and capsule breakage at diagnosis also showed increased GLUT5 expression levels (p=0.039 and p=0.019, respectively). Moreover, GLUT5 showed statistical significance in those samples identified as being of clear cell histological type (p=0.001). A high expression of GLUT5 in human RCC was observed. GLUT5 appears to be correlated with grade II differentiation, locoregional invasion and aggressiveness, and may play a role in RCC development

    A Homogenous Set of Globular Cluster Relative Distances and Reddenings

    Get PDF
    We present distance modulus and reddening determinations for 72 Galactic globular clusters from the homogeneous photometric database of Piotto et al. (2002), calibrated to the HST flight F439W and F555W bands. The distances have been determined by comparison with theoretical absolute magnitudes of the ZAHB. For low and intermediate metallicity clusters, we have estimated the apparent Zero Age Horizontal Branch (ZAHB) magnitude from the RR Lyrae level. For metal rich clusters, the ZAHB magnitude was obtained from the fainter envelope of the red HB. Reddenings have been estimated by comparison of the HST colour-magnitude diagrams (CMD) with ground CMDs of low reddening template clusters. The homogeneity of both the photometric data and the adopted methodological approach allowed us to obtain highly accurate relative cluster distances and reddenings. Our results are also compared with recent compilations in the literature.Comment: 12 pages, 6 figures, accepted for publication in Astronomy & Astrophysic
    • …
    corecore