711 research outputs found

    Surface Brightness Fluctuations from archival ACS images: a stellar population and distance study

    Full text link
    We derive Surface Brightness Fluctuations (SBF) and integrated magnitudes in the V- and I-bands using Advanced Camera for Surveys (ACS) archival data. The sample includes 14 galaxies covering a wide range of physical properties: morphology, total absolute magnitude, integrated color. We take advantage of the latter characteristic of the sample to check existing empirical calibrations of absolute SBF magnitudes both in the I- and V-passbands. Additionally, by comparing our SBF and color data with the Teramo-SPoT simple stellar population models, and other recent sets of population synthesis models, we discuss the feasibility of stellar population studies based on fluctuation magnitudes analysis. The main result of this study is that multiband optical SBF data and integrated colors can be used to significantly constrain the chemical composition of the dominant stellar system in the galaxy, but not the age in the case of systems older than 3 Gyr. SBF color gradients are also detected and analyzed. These SBF gradient data, together with other available data, point to the existence of mass dependent metallicity gradients in galaxies, with the more massive objects showing a non--negligible SBF versus color gradient. The comparison with models suggests that such gradients imply more metal rich stellar populations in the galaxies' inner regions with respect to the outer ones.Comment: ApJ Accepte

    Imprints of Environment on Cluster and Field Late-type Galaxies at z~1

    Full text link
    We present a comparison of late-type galaxies (Sa and later) in intermediate redshift clusters and the field using ACS imaging of four cluster fields: CL0152-1357, CL1056-0337 (MS1054), CL1604+4304, and CL1604+4321. Concentration, asymmetry, and clumpiness parameters are calculated for each galaxy in blue (F606W or F625W) and red (F775W or F814W) filters. Galaxy half-light radii, disk scale lengths, color gradients, and overall color are compared. We find marginally significant differences in the asymmetry distributions of spiral and irregular galaxies in the X-ray luminous and X-ray faint clusters. The massive clusters contain fewer galaxies with large asymmetries. The physical sizes of the cluster and field populations are similar; no significant differences are found in half-light radii or disk scale lengths. The most significant difference is in rest-frame U−BU-B color. Late-type cluster galaxies are significantly redder, ∌0.3\sim 0.3 magnitudes at rest-frame U−BU-B, than their field counterparts. Moreover, the intermediate-redshift cluster galaxies tend to have blue inward color gradients, in contrast to the field galaxies, but similar to late-type galaxies in low redshift clusters. These blue inward color gradients are likely to be the result of enhanced nuclear star formation rates relative to the outer disk. Based on the significant rest-frame color difference, we conclude that late-type cluster members at z∌0.9z\sim0.9 are not a pristine infalling field population; some difference in past and/or current star formation history is already present. This points to high redshift ``groups'', or filaments with densities similar to present-day groups, as the sites where the first major effects of environment are imprinted.Comment: updated titl

    The Environment of M85 optical transient 2006-1: constraints on the progenitor age and mass

    Get PDF
    M85 optical transient 2006-1 (M85 OT 2006-1) is the most luminous member of the small family of V838 Mon-like objects, whose nature is still a mystery. This event took place in the Virgo cluster of galaxies and peaked at an absolute magnitude of I~-13. Here we present Hubble Space Telescope images of M85 OT 2006-1 and its environment, taken before and after the eruption, along with a spectrum of the host galaxy at the transient location. We find that the progenitor of M85 OT 2006-1 was not associated with any star forming region. The g and z-band absolute magnitudes of the progenitor were fainter than about -4 and -6 mag, respectively. Therefore, we can set a lower limit of ~50 Myr on the age of the youngest stars at the location of the progenitor that corresponds to a mass of <7 solar mass. Previously published line indices suggest that M85 has a mean stellar age of 1.6+/-0.3 Gyr. If this mean age is representative of the progenitor of M85 OT 2006-1, then we can further constrain its mass to be less than 2 solar mass. We compare the energetics and mass limit derived for the M85 OT 2006-1 progenitor with those expected from a simple model of violent stellar mergers. Combined with further modeling, these new clues may ultimately reveal the true nature of these puzzling events.Comment: 4 pages, accepted to Ap

    HST/Acs Weak-Lensing and Chandra X-Ray Studies of the High-Redshift Cluster MS 1054-0321

    Full text link
    We present Hubble Space Telescope/Advanced Camera for Surveys (ACS) weak-lensing and Chandra X-ray analyses of MS 1054-0321 at z=0.83, the most distant and X-ray luminous cluster in the Einstein Extended Medium-Sensitivity Survey (EMSS). The high-resolution mass reconstruction through ACS weak-lensing reveals the complicated dark matter substructure in unprecedented detail, characterized by the three dominant mass clumps with the four or more minor satellite groups within the current ACS field. The direct comparison of the mass map with the Chandra X-ray image shows that the eastern weak-lensing substructure is not present in the X-ray image and, more interestingly, the two X-ray peaks are displaced away from the hypothesized merging direction with respect to the corresponding central and western mass clumps, possibly because of ram pressure. In addition, as observed in our previous weak-lensing study of another high-redshift cluster CL 0152-1357 at z=0.84, the two dark matter clumps of MS 1054-0321 seem to be offset from the galaxy counterparts. We examine the significance of these offsets and discuss a possible scenario, wherein the dark matter clumps might be moving ahead of the cluster galaxies. The non-parametric weak-lensing mass modeling gives a projected mass of M(r<1 Mpc)=(1.02+-0.15)x 10^{15} solar mass, where the uncertainty reflects both the statistical error and the cosmic shear effects. Our temperature measurement of T=8.9_{-0.8}^{+1.0} keV utilizing the newest available low-energy quantum efficiency degradation prescription for the Chandra instrument, together with the isothermal beta description of the cluster (r_c=16"+-15" and beta=0.78+-0.08), yields a projected mass of M(r<1 Mpc)=(1.2+-0.2) x 10^{15} solar mass, consistent with the weak-lensing result.Comment: Accepted for publication in apj. Full-resolution version can be downloaded from http://acs.pha.jhu.edu/~mkjee/ms1054.pd

    Globular Clusters in Dense Clusters of Galaxies

    Get PDF
    Deep imaging data from the Keck II telescope are employed to study the globular cluster (GC) populations in the cores of six rich Abell clusters. The sample includes A754, A1644, A2124, A2147, A2151, and A2152, and spans the redshift range z = 0.035-0.066. The clusters also range in morphology from spiral-rich, irregular systems to centrally concentrated cD clusters rich in early-type galaxies. Globular cluster specific frequencies S_N and luminosity function dispersions are measured for a total of 9 galaxies in six central fields. The measured values of S_N for the six brightest cluster galaxies (BCGs) are all higher than typical values for giant ellipticals, in accord with the known S_N-density correlations. The three non-BCGs analyzed also have elevated values of S_N, confirming that central location is a primary factor. The number of GCs per unit mass for these fields are consistent with those found in an earlier sample, giving further evidence that GC number scales with mass and that the S_N variations are due to a deficit of halo light, i.e., S_N reflects mass-to-light ratio. The discussion builds on an earlier suggestion that the GCs (both metal rich and metal poor) around the central cluster galaxies were assembled at early times, and that star formation halted prematurely in the central galaxies at the epoch of cluster collapse. This is consistent with recent simulations of BCG/cluster formation. The subsequent addition of luminous material through cluster dynamical evolution can cause S_N to decrease, and we may be seeing the first evidence of this. Finally, the GC luminosity function measurements are used to constrain the relative distances of the three clusters that make up the Hercules supercluster.Comment: Uses emulateapj.sty (included); 17 pages with 9 included PostScript figures. Figures 1-6 are separate GIF images (so 15 figures total) available from http://astro.caltech.edu/~jpb/clusters -- the full PostScript version of the paper (20 pages; 2.2 Mb compressed) incorporating Figures 1-6 can also be grabbed from this URL. Accepted for publication in A

    The Evolution of the Field and Cluster Morphology-Density Relation for Mass-Selected Samples of Galaxies

    Get PDF
    The Sloan Digital Sky Survey (SDSS) and photometric/spectroscopic surveys in the GOODS-South field (the Chandra Deep Field-South, CDFS) are used to construct volume-limited, stellar mass-selected samples of galaxies at redshifts 0<z<1. The CDFS sample at 0.6<z<1.0 contains 207 galaxies complete down to M=4x10^10 Msol (for a ``diet'' Salpeter IMF), corresponding to a luminosity limit for red galaxies of M_B=-20.1. The SDSS sample at 0.020<z<0.045 contains 2003 galaxies down to the same mass limit, which corresponds to M_B=-19.3 for red galaxies. Morphologies are determined with an automated method, using the Sersic parameter n and a measure of the residual from the model fits, called ``bumpiness'', to distinguish different morphologies. These classifications are verified with visual classifications. In agreement with previous studies, 65-70% of the galaxies are located on the red sequence, both at z~0.03 and at z~0.8. Similarly, 65-70% of the galaxies have n>2.5. The fraction of E+S0 galaxies is 43+/-3%$ at z~0.03 and 48+/-7% at z~0.8, i.e., it has not changed significantly since z~0.8. When combined with recent results for cluster galaxies in the same redshift range, we find that the morphology-density relation for galaxies more massive than 0.5M* has remained constant since at least z~0.8. This implies that galaxies evolve in mass, morphology and density such that the morphology-density relation does not change. In particular, the decline of star formation activity and the accompanying increase in the stellar mass density of red galaxies since z~1 must happen without large changes in the early-type galaxy fraction in a given environment.Comment: 16 pages, 13 figures, 2 tables. Updated to match journal version. Will appear in ApJ (vol. 670, p. 206

    K-band versus I-band Surface Brightness Fluctuations as distance indicators

    Get PDF
    We evaluate the method of optical and infrared Surface Brightness Fluctuations (SBF) as a distance indicator and its application on 8-m class telescopes, such as the Very Large Telescope (VLT). The novelty of our approach resides in the development of Monte Carlo simulations of SBF observations incorporating realistic elliptical galaxy stellar population models, the effects induced by globular clusters and background galaxies, instrumental noise, sky background and PSF blurring. We discuss, for each band and in different observational conditions, the errors on distance measurements arising from stellar population effects, data treatment and observational constraints. With 8-m class telescopes, one can extend I-band SBF measurements out to 6000-10000 km/s. Integration times in the K-band are too expensive from the ground, due to the high infrared background for large-scale distance determination projects. Nevertheless ground-based K-band measurements are necessary to understand stellar population effects on the SBF calibration, and to prepare future space-based observations, where this band is more efficient.Comment: A&A, in press, 17 pages, 10 figure
    • 

    corecore