27 research outputs found

    Biotopical distribution and seasonal activity of model species of the family Gnaphosidae (Araneae) in Zemen gorge (SW Bulgaria)

    Get PDF
    A faunistic study was carried out for three years in Zemen gorge (1984-1986). With the help of Barber-traps 675 gnaphosid spiders were caught in 4 localities, each with 2 habitats, meadow and forest. 23 species were found in total and their biotopical distribution was recorded. The investigated habitats are faunistically similar, mainly in qualitative respect. In addition data about the phenology of the most frequent species are presented. The males are most abundant in spring and summer and disappear in VIII, the females are most numerous after VII and can be found till the end of IX, whereas the juveniles can be found till the end of X. The species abundance reaches its peak in V-VI

    A survey of spiders (Arachnida: Araneae) of Prince of Wales Island, Alaska : combining morphological and DNA barcode identification techniques

    Get PDF
    Surveys during the summer of 2004 and August 2009 on Prince of Wales Island, Alaska, USA resulted in collection of 1064 adult spiders representing 84 species. Barcoding of spiders collected in 2009 resulted in DNA barcode data for 212 specimens representing 63 species. DNA barcode data were then used to facilitate the identification of otherwise unidentifiable juvenile and female specimens as well as to investigate phylogenetically four lineages with large branch lengths between specimens. Using morphological and DNA barcode identifications provided a more complete list of identified specimens than was possible using morphological data alone

    Description of Ozyptila balcanica sp. n. from the Balkan Peninsula and its Comparison with the closely related O. umbraculorum Simon, 1932 (Araneae: Thomisidae)

    Get PDF
    Ozyptila balcanica sp. n. is described (based on both males and females) from Bulgaria (Zemen Gorge), Greece (Arkadia, Mainalo) and FYR Macedonia (Skopje Region, Osogovo Mts.). The new species resembles the poorly known O. umbraculorum Simon, 1932, recorded from France, Portugal and Spain, but is clearly a distinct species. Illustrations of both taxa are presented. Due to the isolated position of both species in the genus, we proposed a new species group – umbraculorum, characterised by a large intermediate apophysis (ITA), armed with well-developed teeth, and a long scimitar-shaped tegular apophysis. The females have similar epigynes with pan-shaped median septum.This study has been supported by the SYNTHESYS Project (http://www.synthesys.info/) financed by EC Research Infrastructure Action under the FP7 “Capacities” Program. Part of this project was co-founded also by the European Union (European Social Fund) and National Resources under the Operational Programme “Education and Lifelong Learning” Action 81324 – SPIDOnetGR, ARISTEIA II Programme, NSRF 2007-2013.Peer reviewe

    DNA barcoding indicates hidden diversity of \u3cem\u3eEuscorpius\u3c/em\u3e (Scorpiones: Euscorpiidae) in Turkey

    Get PDF
    The Anatolian fauna of the genus Euscorpius (Scorpiones: Euscorpiidae) is in the process of reassessment. Twelve species of this genus are currently recognized for Anatolia, of which seven have been recently described on the basis of morphology. We demonstrate additional cryptic diversity in Anatolian Euscorpius by applying molecular markers (mitochondrial COI and 16S rDNA genes) from 14 populations, of which 13 were morphologically characterized by “em=3,” a phenotypic marker on the pedipalp patella. All studied Anatolian forms are strongly supported as a single clade compared to the European (from the Alps to the Balkans) taxa of the subgenus Alpiscorpius. Of these, six are assigned to known species (E. ciliciensis, E. mingrelicus, E. eskisehirensis, E. phrygius, and E. uludagensis); and three (Aksaray, Ankara, Sakarya) are closely related to a clade containing E. phrygius and E. uludagensis. Four clades represent undescribed taxonomic forms, possibly of species level: Balikesir/Canakkale (Kazdağları National Park), Konya, Denizli, and Trabzon, all with em=3. Another putative species from Kayseri Province, Aladağlar (=Antitaurus) Mts., is related to (E. ciliciensis + E. eskisehirensis) clade; however, it exhibits em=4, which appears to be the first case of reversal in this important trait for the genus Euscorpius

    Euscorpius sicanus (Scorpiones: Euscorpiidae) from Tunisia: DNA Barcoding Confirms Ancient Disjunctions Across the Mediterranean Sea

    Get PDF
    We used a DNA barcoding marker (mitochondrial cox1) to investigate the controversial natural occurrence of Euscorpius sicanus (C.L. Koch) in North Africa. We tested this hypothesis by comparing a sample collected from a mountain in Tunisia to disjunct populations in Sardinia, Malta, and Greece. Using these samples, and a few additional Euscorpius spp. from southern Europe as outgroups, we reconstructed the maternal phylogeny. We then used a molecular clock to place the phylogeny in a temporal context. The Tunisian sample grouped closest to a specimen from Sardinia, with both being more distantly related to E. sicanus from Malta, which is known to be genetically similar to samples from Sicily. Molecular clock estimates suggest an ancient disjunction across the Mediterranean Sea, with the divergence between samples from Sardinia and Tunisia estimated to have occurred between the Late Miocene and late Pliocene. The divergence date (mean = 5.56 Mya) closely corresponds with the timing of a sudden refilling of the Mediterranean Sea after it had evaporated during the Messinian salinity crisis. This rapid influx of water, in conjunction with tectonic activity, could have sundered connections between Euscorpius in North Africa and what is now the island of Sardinia. These results provide yet another case in which DNA barcodes have proven useful for more than just identifying and discovering species

    A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples

    Get PDF
    The synthesis of this dataset was enabled by funding from the Canada Foundation for Innovation, from Genome Canada through Ontario Genomics, from NSERC, and from the Ontario Ministry of Research, Innovation and Science in support of the International Barcode of Life project. It was also enabled by philanthropic support from the Gordon and Betty Moore Foundation and from Ann McCain Evans and Chris Evans. The release of the data on GGBN was supported by a GGBN – Global Genome Initiative Award and we thank G. Droege, L. Loo, K. Barker, and J. Coddington for their support. Our work depended heavily on the analytical capabilities of the Barcode of Life Data Systems (BOLD, www.boldsystems.org). We also thank colleagues at the CBG for their support, including S. Adamowicz, S. Bateson, E. Berzitis, V. Breton, V. Campbell, A. Castillo, C. Christopoulos, J. Cossey, C. Gallant, J. Gleason, R. Gwiazdowski, M. Hajibabaei, R. Hanner, K. Hough, P. Janetta, A. Pawlowski, S. Pedersen, J. Robertson, D. Roes, K. Seidle, M. A. Smith, B. St. Jacques, A. Stoneham, J. Stahlhut, R. Tabone, J.Topan, S. Walker, and C. Wei. For bioblitz-related assistance, we are grateful to D. Ireland, D. Metsger, A. Guidotti, J. Quinn and other members of Bioblitz Canada and Ontario Bioblitz. For our work in Canada’s national parks, we thank S. Woodley and J. Waithaka for their lead role in organizing permits and for the many Parks Canada staff who facilitated specimen collections, including M. Allen, D. Amirault-Langlais, J. Bastick, C. Belanger, C. Bergman, J.-F. Bisaillon, S. Boyle, J. Bridgland, S. Butland, L. Cabrera, R. Chapman, J. Chisholm, B. Chruszcz, D. Crossland, H. Dempsey, N. Denommee, T. Dobbie, C. Drake, J. Feltham, A. Forshner, K. Forster, S. Frey, L. Gardiner, P. Giroux, T. Golumbia, D. Guedo, N. Guujaaw, S. Hairsine, E. Hansen, C. Harpur, S. Hayes, J. Hofman, S. Irwin, B. Johnston, V. Kafa, N. Kang, P. Langan, P. Lawn, M. Mahy, D. Masse, D. Mazerolle, C. McCarthy, I. McDonald, J. McIntosh, C. McKillop, V. Minelga, C. Ouimet, S. Parker, N. Perry, J. Piccin, A. Promaine, P. Roy, M. Savoie, D. Sigouin, P. Sinkins, R. Sissons, C. Smith, R. Smith, H. Stewart, G. Sundbo, D. Tate, R. Tompson, E. Tremblay, Y. Troutet, K. Tulk, J. Van Wieren, C. Vance, G. Walker, D. Whitaker, C. White, R. Wissink, C. Wong, and Y. Zharikov. For our work near Canada’s ports in Vancouver, Toronto, Montreal, and Halifax, we thank R. Worcester, A. Chreston, M. Larrivee, and T. Zemlak, respectively. Many other organizations improved coverage in the reference library by providing access to specimens – they included the Canadian National Collection of Insects, Arachnids and Nematodes, Smithsonian Institution’s National Museum of Natural History, the Canadian Museum of Nature, the University of Guelph Insect Collection, the Royal British Columbia Museum, the Royal Ontario Museum, the Pacifc Forestry Centre, the Northern Forestry Centre, the Lyman Entomological Museum, the Churchill Northern Studies Centre, and rare Charitable Research Reserve. We also thank the many taxonomic specialists who identifed specimens, including A. Borkent, B. Brown, M. Buck, C. Carr, T. Ekrem, J. Fernandez Triana, C. Guppy, K. Heller, J. Huber, L. Jacobus, J. Kjaerandsen, J. Klimaszewski, D. Lafontaine, J-F. Landry, G. Martin, A. Nicolai, D. Porco, H. Proctor, D. Quicke, J. Savage, B. C. Schmidt, M. Sharkey, A. Smith, E. Stur, A. Tomas, J. Webb, N. Woodley, and X. Zhou. We also thank K. Kerr and T. Mason for facilitating collections at Toronto Zoo and D. Iles for servicing the trap at Wapusk National Park. This paper contributes to the University of Guelph’s Food from Thought research program supported by the Canada First Research Excellence Fund. The Barcode of Life Data System (BOLD; www.boldsystems.org)8 was used as the primary workbench for creating, storing, analyzing, and validating the specimen and sequence records and the associated data resources48. The BOLD platform has a private, password-protected workbench for the steps from specimen data entry to data validation (see details in Data Records), and a public data portal for the release of data in various formats. The latter is accessible through an API (http://www.boldsystems.org/index.php/resources/api?type=webservices) that can also be controlled through R75 with the package ‘bold’76.Peer reviewedPublisher PD

    A molecular-based identification resource for the arthropods of Finland

    Get PDF
    Publisher Copyright: © 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.Peer reviewe

    Spiders of Albania – Faunistic and Zoogeographical Review (Arachnida: Araneae)

    Get PDF
    The spider fauna of Albania is still insuffi ciently studied. The present list was compiled after a critical review of the existing literature data and taxonomic review of some available collections. The study comprises 335 species from 36 families. In this number, 197 species are new to the spider fauna of the country. According to their current distribution the species can be assigned to 18 zoogeographical categories, grouped into 5 complexes (Cosmopolitic, Holarctic, European, Mediterranean, Endemics). Dominant are Holarctic species (56.4%) followed by European (16.4%) and Mediterranean (16.2%). The endemics (8%) are also well presented and refl ect the local character of the fauna and the main role of the Balkan Peninsula in its origin and formation.The research received also support from the SYNTHESYS Project which is fi nanced by the European Community Research Infrastructure Action under the FP6 ‘Structuring the European Research Area’ Program.Peer reviewe

    Araneae of Canada

    Get PDF
    In 1979 nearly 1400 spider species in 32 families either had been recorded (1249) or were believed to occur (~140) in Canada. Twenty years later, although significant progress had been made in survey efforts in some regions, Canada’s spider inventory had only increased by approximately 7% to roughly 1500 species known or expected to occur. The family count had increased to 38 but only two additions were truly novel (five family additions and one family deletion were the result of advances in family-level systematics). The first comprehensive taxonomic checklist of Canadian spider species was published in 2010 documenting the regional distributions of 1376 species representing 42 families (three novel since 1999). From 2010 through 2017 new national records steadily accumulated resulting in the current (2018) Canadian inventory of 1477 species classified in 45 families (one novel since 2010). Although there has been close to a 20% increase in the number of spider species recorded in Canada since 1979, much greater increases have occurred in some of the regional species checklists, indicating increasing knowledge of the regional distribution of species previously recorded elsewhere in Canada. For example the regional checklists for Newfoundland, British Columbia, and Prince Edward Island have increased by 69%, 339%, and 520%, respectively. The national and regional increases reflect significant advances in the first two decades of the 21st Century in spider faunistics research in previously under-sampled habitats and regions and the development of molecular techniques and consequent barcoding of spiders. Of the 1477 species recorded in Canada, 92% have been successfully DNA barcoded resulting in 1623 unique Barcode Index Numbers (BINs). At least 25 of the BINs are associated with relatively easily distinguished but undescribed morpho-species. The majority, however, appear to indicate the existence of many cryptic species within Canada’s known spider fauna. These data, coupled with the fact that novel Canadian or even Nearctic spider species records (including of undescribed species) continue to accumulate annually (especially in habitat-diverse regions such as British Columbia), suggest that Canada’s tally of spider species may approach or even exceed 1800
    corecore