512 research outputs found

    Epicyclic oscillations of fluid bodies Paper II. Strong gravity

    Full text link
    Fluids in external gravity may oscillate with frequencies characteristic of the epicyclic motions of test particles. We explicitly demonstrate that global oscillations of a slender, perfect fluid torus around a Kerr black hole admit incompressible vertical and radial epicyclic modes. Our results may be directly relevant to one of the most puzzling astrophysical phenomena -- high (hundreds of hertz) frequency quasiperiodic oscillations (QPOs) detected in X-ray fluxes from several black hole sources. Such QPOs are pairs of stable frequencies in the 3/2 ratio. It seems that they originate a few gravitational radii away from the black hole and thus observations of them have the potential to become an accurate probe of super-strong gravity.Comment: submitted to Classical and Quantum Gravit

    Quasi-Periodic Oscillations from Magnetorotational Turbulence

    Full text link
    Quasi-periodic oscillations (QPOs) in the X-ray lightcurves of accreting neutron star and black hole binaries have been widely interpreted as being due to standing wave modes in accretion disks. These disks are thought to be highly turbulent due to the magnetorotational instability (MRI). We study wave excitation by MRI turbulence in the shearing box geometry. We demonstrate that axisymmetric sound waves and radial epicyclic motions driven by MRI turbulence give rise to narrow, distinct peaks in the temporal power spectrum. Inertial waves, on the other hand, do not give rise to distinct peaks which rise significantly above the continuum noise spectrum set by MRI turbulence, even when the fluid motions are projected onto the eigenfunctions of the modes. This is a serious problem for QPO models based on inertial waves.Comment: 4 pages, 2 figures. submitted to ap

    Neutron stars accreting the ISM: Are they fast or slow objects ?

    Full text link
    Old neutron stars (ONSs) which have radiated away their internal and rotational energy may still shine if accreting the interstellar medium. Rather stringent limits from the analysis of ROSAT surveys indicate that most optimistic predictions on ONSs observability are in excess of a factor as large as 100\sim 100. Here we explore two possible evolutionary scenarios that may account for the paucity of ONSs. In the first it is assumed that the ONS population is not too fast (V<100kms1V<100 km s^{-1}) and that magnetic field decay guides the evolution. In the second, NSs move with high speed (V>100V>100 km s1^{-1}) and preserve their magnetic field at birth. We find that according to the former scenario most ONSs are now in the propeller phase, while in the latter nearly all ONSs are silent, dead pulsars.Comment: 5 pages including 2 postscript figures, to appear in the proceedings of Rome BeppoSax-RossiXTE meetin

    Design and qualification of the SEU/TD Radiation Monitor chip

    Get PDF
    This report describes the design, fabrication, and testing of the Single-Event Upset/Total Dose (SEU/TD) Radiation Monitor chip. The Radiation Monitor is scheduled to fly on the Mid-Course Space Experiment Satellite (MSX). The Radiation Monitor chip consists of a custom-designed 4-bit SRAM for heavy ion detection and three MOSFET's for monitoring total dose. In addition the Radiation Monitor chip was tested along with three diagnostic chips: the processor monitor and the reliability and fault chips. These chips revealed the quality of the CMOS fabrication process. The SEU/TD Radiation Monitor chip had an initial functional yield of 94.6 percent. Forty-three (43) SEU SRAM's and 14 Total Dose MOSFET's passed the hermeticity and final electrical tests and were delivered to LL

    The Kozai Mechanism and the Evolution of Binary Supermassive Black Holes

    Get PDF
    We consider the dynamical evolution of bound, hierarchical triples of supermassive black holes that might be formed in the nuclei of galaxies undergoing sequential mergers. The tidal force of the outer black hole on the inner binary produces eccentricity oscillations through the Kozai mechanism, and this can substantially reduce the gravitational wave merger time of the inner binary. We numerically calculate the merger time for a wide range of initial conditions and black hole mass ratios, including the effects of octupole interactions in the triple as well as general relativistic periastron precession in the inner binary. The semimajor axes and the mutual inclination of the inner and outer binaries are the most important factors affecting the merger time. We find that for a random distribution of inclination angles and approximately equal mass black holes, it is possible to reduce the merger time of a near circular inner binary by more than a factor of ten in over thirty percent of all cases. We estimate that a typical exterior quadrupole moment from surrounding matter in the galaxy may also be sufficient to excite eccentricity oscillations in supermassive black hole binaries, and also accelerate black hole mergers

    Oscillations of tori in the pseudo-Newtonian potential

    Full text link
    Context. The high-frequency quasi-periodic oscillations (HF QPOs) in neutron star and stellar-mass black hole X-ray binaries may be the result of a resonance between the radial and vertical epicyclic oscillations in strong gravity. Aims. In this paper we investigate the resonant coupling between the epicyclic modes in a torus in a strong gravitational field. Methods. We perform numerical simulations of axisymmetric constant angular momentum tori in the pseudo-Newtonian potential. The epicyclic motion is excited by adding a constant radial velocity to the torus. Results. We verify that slender tori perform epicyclic motions at the frequencies of free particles, but the epicyclic frequencies decrease as the tori grow thicker. More importantly, and in contrast to previous numerical studies, we do not find a coupling between the radial and vertical epicyclic motions. The appearance of other modes than the radial epicyclic motion in our simulations is rather due to small numerical deviations from exact equilibrium in the initial state of our torus. Conclusions. We find that there is no pressure coupling between the two axisymmetric epicyclic modes as long as the torus is symmetric with respect to the equatorial plane. However we also find that there are other modes in the disc that may be more attractive for explaining the HF QPOs.Comment: 8 pages, 9 figure

    Ambipolar Diffusion in the Magnetorotational Instability

    Full text link
    The effects of ambipolar diffusion on the linear stability of weakly ionised accretion discs are examined. Earlier work on this topic has focused on axial magnetic fields and perturbation wavenumbers. We consider here more general field and wavenumber geometries, and find that qualitatively new results are obtained. Provided a radial wavenumber and azimuthal field are present along with their axial counterparts, ambipolar diffusion will always be destabilising, with unstable local modes appearing at well-defined wavenumber bands. The wavenumber corresponding to the maximum growth rate need not, in general, lie along the vertical axis. Growth rates become small relative to the local angular velocity when the ion-neutral collision time exceeds the orbital time. In common with Hall electromotive forces, ambipolar diffusion destabilises both positive and negative angular velocity gradients. In at least some cases, therefore, uniformly rotating molecular cloud cores may reflect the marginally stable state of the ambipolar magnetorotational instability.Comment: Submitted to MN, 6 pages, 3 figs, MN style file v2.

    Epicyclic oscillations of non-slender fluid tori around Kerr black holes

    Full text link
    Considering epicyclic oscillations of pressure-supported perfect fluid tori orbiting Kerr black holes we examine non-geodesic (pressure) effects on the epicyclic modes properties. Using a perturbation method we derive fully general relativistic formulas for eigenfunctions and eigenfrequencies of the radial and vertical epicyclic modes of a slightly non-slender, constant specific angular momentum torus up to second-order accuracy with respect to the torus thickness. The behaviour of the axisymmetric and lowest-order (m=±1m=\pm 1) non-axisymmetric epicyclic modes is investigated. For an arbitrary black hole spin we find that, in comparison with the (axisymmetric) epicyclic frequencies of free test particles, non-slender tori receive negative pressure corrections and exhibit thus lower frequencies. Our findings are in qualitative agreement with the results of a recent pseudo-Newtonian study of analogous problem defined within the Paczy{\'n}ski-Wiita potential. Implications of our results on the high-frequency QPO models dealing with epicyclic oscillations are addressed.Comment: 24 pages, 8 figure
    corecore