867 research outputs found

    Surface Effects Resulting from Tektite Ablation

    Get PDF
    Photographic results of surface effects caused by tektite ablatio

    The quantification of wind turbulence by means of the fourier dimension

    Get PDF
    Signal Processing within the frequency domain has long been associated with electrical engineering as a means to quantify the characteristics of voltage/current waveforms. Historically, wind speed data (speed/direction) have been captured and stored as statistical markers within a time series description. This form of storage, while cumbersome, is applicable in wind regimes that are relatively laminar. In urban environments, where the associated topographies and building morphologies are heterogeneous, wind speeds are highly turbulent and chaotic. In such environments and with particular reference to wind energy, time series statistics are of limited use, unless the generic probability distribution function (PDF) is also considered. Furthermore, the industry standard metric that quantifies the turbulent component of wind speed, Turbulence Intensity (TI), is computationally cumbersome and resource intensive. An alternative model to quantify turbulence is proposed here. This paper will describe how Fourier dimension modelling (Df), through linkage with the Weibull probability density function, can quantify turbulence in a more efficient manner. This model could potentially be developed to facilitate urban wind power prediction and is relevant to the planning and development considerations within the built environment

    Re-negotiating Ideologies of Bilingualism on the Margins of Education

    Get PDF
    This article reports on an ethnographic study carried out in three interrelated sites: two contrasting secondary schools and a Youth-Club (the principal focus of this article), in an area of southwest Wales. This article highlights the incongruence between the language at home and the language of the school and posits that the relationship between language use at school and in the wider community needs to be problematised and questioned far more than has been done thus far. This study questions whether school-based ideologies and school-based practices are re-negotiated or contested on the margins of education and whether this re-negotiation and contestation plays an important role in whether a young person chooses to use Welsh or English outside of school. It will be argued that recreational spaces, even though loosely connected to schools as institutions, function as more open spaces where institutional ideologies are actively reworked and renegotiated, either through choosing to use English or by mixing and blending different aspects of linguistic resources, or by re-negotiating and questioning which version of Welshness is more valuable, ‘the removed and authentic’ (as seen at the Welsh school) or the ‘new and hybrid’ as seen at the Youth-Club

    Information Hiding Using Convolutional Encoding

    Get PDF
    We consider two functions f1(r) and f2(r), for r 2 Rn and the problem of ‘Diffusing’ these functions together, followed by the application of an encryption process we call ‘Stochastic Diffusion’ and then hiding the output of this process in to one or other of the same functions. The coupling of these two processes (i.e., data diffusion and stochastic diffusion) is considered using a form of conditioning that generates a wellposed and data consistent inverse solution for the purpose of decrypting the output. After presenting the basic encryption method and (encrypted) information hiding model, coupled with a mathematical analysis (within the context of ‘convolutional encoding’), we provide a case study which is concerned with the implementation of the approach for full-colour 24-bit digital images. The ideas considered yields the foundations for a number of wide-ranging applications that include covert signal and image information interchange, data authentication, copyright protection and digital rights management, for example

    Mapping the potential energy landscape of intrinsically disordered proteins at amino acid resolution

    Get PDF
    Intrinsically disordered regions are predicted to exist in a significant fraction of proteins encoded in eukaryotic genomes. The high levels of conformational plasticity of this class of proteins endows them with unique capacities to act in functional modes not achievable by folded proteins, but also places their molecular characterization beyond the reach of classical structural biology. New techniques are therefore required to understand the relationship between primary sequence and biological function in this class of proteins. Although dependences of some NMR parameters such as chemical shifts (CSs) or residual dipolar couplings (RDCs) on structural propensity are known, so that sampling regimes are often inferred from experimental observation, there is currently no framework that allows for a statistical mapping of the available Ramachandran space of each amino acid in terms of conformational propensity. In this study we develop such an approach, combining highly efficient conformational sampling with ensemble selection to map the backbone conformational sampling of IDPs on a residue specific level. By systematically analyzing the ability of NMR data to map the conformational landscape of disordered proteins, we identify combinations of RDCs and CSs that can be used to raise conformational degeneracies inherent to different data types, and apply these approaches to characterize the conformational behavior of two intrinsically disordered proteins, the K18 domain from Tau protein and NTAIL from measles virus nucleoprotein. In both cases, we identify the enhanced populations of turn and helical regions in key regions of the proteins, as well as contiguous strands that show clear and enhanced polyproline II sampling

    Bioprospecting Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider

    Get PDF
    Background Combining high strength and elasticity, spider silks are exceptionally tough, i.e., able to absorb massive kinetic energy before breaking. Spider silk is therefore a model polymer for development of high performance biomimetic fibers. There are over 41.000 described species of spiders, most spinning multiple types of silk. Thus we have available some 200.000+ unique silks that may cover an amazing breadth of material properties. To date, however, silks from only a few tens of species have been characterized, most chosen haphazardly as model organisms (Nephila) or simply from researchers' backyards. Are we limited to ‘blindly fishing’ in efforts to discover extraordinary silks? Or, could scientists use ecology to predict which species are likely to spin silks exhibiting exceptional performance properties? Methodology We examined the biomechanical properties of silk produced by the remarkable Malagasy ‘Darwin's bark spider’ (Caerostris darwini), which we predicted would produce exceptional silk based upon its amazing web. The spider constructs its giant orb web (up to 2.8 m2) suspended above streams, rivers, and lakes. It attaches the web to substrates on each riverbank by anchor threads as long as 25 meters. Dragline silk from both Caerostris webs and forcibly pulled silk, exhibits an extraordinary combination of high tensile strength and elasticity previously unknown for spider silk. The toughness of forcibly silked fibers averages 350 MJ/m3, with some samples reaching 520 MJ/m3. Thus, C. darwini silk is more than twice tougher than any previously described silk, and over 10 times better than Kevlar®. Caerostris capture spiral silk is similarly exceptionally tough. Conclusions Caerostris darwini produces the toughest known biomaterial. We hypothesize that this extraordinary toughness coevolved with the unusual ecology and web architecture of these spiders, decreasing the likelihood of bridgelines breaking and collapsing the web into the river. This hypothesis predicts that rapid change in material properties of silk co-occurred with ecological shifts within the genus, and can thus be tested by combining material science, behavioral observations, and phylogenetics. Our findings highlight the potential benefits of natural history–informed bioprospecting to discover silks, as well as other materials, with novel and exceptional properties to serve as models in biomimicry.Primary funding for this work came from the Slovenian Research Agency (grant Z1-9799-0618-07 to I. Agnarsson), the National Geographic Society (grant 8655-09 to the authors), and the National Science Foundation (grants DBI-0521261, DEB-0516038 and IOS-0745379 to T. Blackledge). Additional funding came from the European Community 6th Framework Programme (a Marie Curie International Reintegration Grant MIRG-CT-2005 036536 to M. Kuntner). The 2001 field work was supported by the Sallee Charitable Trust grant to I. Agnarsson and M. Kuntner and by a United States National Science Foundation grant (DEB-9712353) to G. Hormiga and J. A. Coddington. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Tides on Other Earths: Implications for Exoplanet and Palaeo-Tidal Simulations

    Get PDF
    A key controller of a planet's rotational evolution, and hence habitability, is tidal dissipation, which on Earth is dominated by the ocean tides. Because exoplanet or deep‐time Earth topographies are unknown, a statistical ensemble is used to constrain possible tidal dissipation rates on an Earth‐like planet. A dedicated tidal model is used together with 120 random continental configurations to simulate Earth's semidiurnal lunar tide. The results show a possible ocean tidal dissipation range spanning 3 orders of magnitude, between 2.3 GWto 1.9 TW (1 TW=1012 W). When model resolution is considered, this compares well with theoretical limits derived for the energetics of Earth's present‐day deep ocean. Consequently, continents exert a fundamental control on tidal dissipation rates and we suggest that plate tectonics on a planet will induce a time‐varying dissipation analogous to Earth's. This will alter rotational periods over millions of years and further complicate the role of tides for planetary evolution. Plain Language Summary The daylength of a planet is key for habitability because it regulates the rate with which solar radiation is received and redistributed at the surface. A main controller of a planet's daylength is the ocean tide, because the dissipation of tidal energy works as a brake on the planet's spin, increasing the daylength. Tides are sensitive to the continental arrangement on a planet, but there are no details of the surface of any exoplanet and only limited information of what Earth looked like in the distant past. The change in Earth's daylength forces the Moon to recede into a higher orbit, but the present‐day recession rate is very high and does not fit our age models of the moon, implying that the tides must have been much weaker in the distant past. Here, we use a series of tidal predictions for random continental configurations of Earth to provide a range of tidal dissipation rates and thus an estimate of how the tides in the deep past may have evolved as Earth's continents grew more and more complex. This research also provides a range of dissipation rates that can be used for simulations of the rotational and orbital evolution of exoplanets
    • …
    corecore