318 research outputs found

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Observation of the Decay Λ0b→Λ+cτ−¯ν

    Get PDF
    The first observation of the semileptonic b-baryon decay Λb0→Λc+τ-ν¯τ, with a significance of 6.1σ, is reported using a data sample corresponding to 3 fb-1 of integrated luminosity, collected by the LHCb experiment at center-of-mass energies of 7 and 8 TeV at the LHC. The τ- lepton is reconstructed in the hadronic decay to three charged pions. The ratio K=B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+π-π+π-) is measured to be 2.46±0.27±0.40, where the first uncertainty is statistical and the second systematic. The branching fraction B(Λb0→Λc+τ-ν¯τ)=(1.50±0.16±0.25±0.23)% is obtained, where the third uncertainty is from the external branching fraction of the normalization channel Λb0→Λc+π-π+π-. The ratio of semileptonic branching fractions R(Λc+)B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+μ-ν¯μ) is derived to be 0.242±0.026±0.040±0.059, where the external branching fraction uncertainty from the channel Λb0→Λc+μ-ν¯μ contributes to the last term. This result is in agreement with the standard model prediction

    Measurement of the photon polarization in Λb→Λγ\Lambda_b \to \Lambda \gamma decays

    Get PDF
    The photon polarization in b→sγb \to s \gamma transitions is measured for the first time in radiative b-baryon decays exploiting the unique spin structure of Λb→Λγ\Lambda_b \to \Lambda \gamma decays. A data sample corresponding to an integrated luminosity of 6  fb−16\;fb^{-1} collected by the LHCb experiment in pppp collisions at a center-of-mass energy of 13  TeV13\;TeV is used. The photon polarization is measured to be αγ=0.82 − 0.26 − 0.13 + 0.17 + 0.04\alpha_{\gamma}= 0.82^{\,+\,0.17\,+\,0.04}_{\,-\,0.26\,-\,0.13}, where the first uncertainty is statistical and the second systematic. This result is in agreement with the Standard Model prediction and previous measurements in b-meson decays. Charge-parity breaking effects are studied for the first time in this observable and found to be consistent with CPCP symmetry.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-030.html (LHCb public pages

    Observation of the doubly charmed baryon decay Ξcc++→Ξc′+π+

    Get PDF
    The Ξcc++→Ξc′+π+ decay is observed using proton-proton collisions collected by the LHCb experiment at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4 fb−1. The Ξcc++→Ξc′+π+ decay is reconstructed partially, where the photon from the Ξc′+→Ξc+γ decay is not reconstructed and the pK−π+ final state of the Ξc+ baryon is employed. The Ξcc++→Ξc′+π+branching fraction relative to that of the Ξcc++→Ξc+π+ decay is measured to be 1.41 ± 0.17 ± 0.10, where the first uncertainty is statistical and the second systematic. [Figure not available: see fulltext.

    Angular analysis of D0→π+π−μ+μ−D^0 \to \pi^+\pi^-\mu^+\mu^- and D0→K+K−μ+μ−D^0 \to K^+K^-\mu^+\mu^- decays and search for CPCP violation

    Get PDF
    The first full angular analysis and an updated measurement of the decay-rate CPCP asymmetry of the D0→π+π−μ+μ−D^0 \to \pi^+\pi^-\mu^+\mu^- and D0→K+K−μ+μ−D^0 \to K^+K^-\mu^+\mu^- decays are reported. The analysis uses proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV. The data set corresponds to an integrated luminosity of 9 fb−1^{-1}. The full set of CPCP-averaged angular observables and their CPCP asymmetries are measured as a function of the dimuon invariant mass. The results are consistent with expectations from the standard model and with CPCP symmetry.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-035.html (LHCb public pages

    Study of charmonium and charmonium-like contributions in B+ → J/ψηK+ decays

    Get PDF
    A study of B+→ J/ψηK+ decays, followed by J/ψ → μ+μ− and η → γγ, is performed using a dataset collected with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. The J/ψη mass spectrum is investigated for contributions from charmonia and charmonium-like states. Evidence is found for the B+→ (ψ2(3823) → J/ψη)K+ and B+→ (ψ(4040) → J/ψη)K+ decays with significance of 3.4 and 4.7 standard deviations, respectively. This constitutes the first evidence for the ψ2(3823) → J/ψη decay

    Searches for rare Bs0 and B 0 decays into four muons

    Get PDF
    Searches for rare Bs0 and B0 decays into four muons are performed using proton-proton collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 9 fb−1. Direct decays and decays via light scalar and J/ψ resonances are considered. No evidence for the six decays searched for is found and upper limits at the 95% confidence level on their branching fractions ranging between 1.8 × 10−10 and 2.6 × 10−9 are set. [Figure not available: see fulltext.

    Observation of the B0→¯D*0K+π− and B0s→¯D*0K−π+ decays

    Get PDF
    The first observations of B0→D¯∗(2007)0K+π- and Bs0→D¯∗(2007)0K-π+ decays are presented, and their branching fractions relative to that of the B0→D¯∗(2007)0π+π- decay are reported. These modes can potentially be used to investigate the spectroscopy of charm and charm-strange resonances and to determine the angle γ of the Cabibbo-Kobayashi-Maskawa unitarity triangle. It is also important to understand them as a source of potential background in determinations of γ from B+→DK+ and B0→DK+π- decays. The analysis is based on a sample corresponding to an integrated luminosity of 5.4 fb-1 of proton-proton collision data at 13 TeV center-of-mass energy recorded with the LHCb detector. The D¯∗(2007)0 mesons are fully reconstructed in the D¯0π0 and D¯0γ channels with the D¯0→K+π- decay. A novel weighting method is used to subtract background while simultaneously applying an event-by-event efficiency correction to account for resonant structures in the decays

    Measurement of the mass and production rate of Ξ−b baryons

    Get PDF
    The first measurement of the production rate of Xi(-)(b) baryons in pp collisions relative to that of Lambda(0 )(b)baryons is reported, using data samples collected by the LHCb experiment, and corresponding to integrated luminosities of 1, 2 and 1.6 fb(-1) at root s = 7, 8 and 13 TeV, respectively. In the kinematic region 2 < eta < 6 and p(T) < 20 GeV/c, we measure f(Xi b-)/f(Lambda b0) B(Xi(-)(b)-> J/psi Xi(-))/B(Lambda(0)(b)-> J/psi Lambda)= (10.8 +/- 0.9 +/- 0.8) x 10(-2) [root s = 7,8 TeV], f(Xi b-)/f(Lambda b0) B(Xi(-)(b)-> J/psi Xi(-))/B(Lambda(0)(b)-> J/psi Lambda) =(13.1 +/- 1.1 +/- 1.0) x 10(-2) [root s = 13 TeV], where and f(Xi b-) and f(Lambda)(b0) the fragmentation fractions of b quarks into Xi(-)(b) and Lambda(0)(b) baryons, respectively; B represents branching fractions; and the uncertainties are due to statistical and experimental systematic sources. The values of f(Xi b-)/f(Lambda b0) are obtained by invoking SU(3) symmetry in the Xi(-)(b)-> J/psi Xi(-) and Lambda(0)(b)-> J/psi Lambda decays. Production asymmetries between Xi(-)(b) and (Xi) over bar (+)(b) baryons are also reported. The mass of the Xi(-)(b) baryon is also measured relative to that of the Lambda(0)(b) baryon, from which it is found that m(Xi(-)(b)) = 5796.70 +/- 0.39 +/- 0.15 +/- 0.17 MeV/c(2), where the last uncertainty is due to the precision on the known Lambda(0)(b) mass. This result represents the most precise determination of the Xi(-)(b) mass
    • …
    corecore