46 research outputs found

    Birthweight, Childhood Body Mass Index, Height and Growth, and Risk of Polycystic Ovary Syndrome

    Get PDF
    Introduction: Adult obesity is linked with polycystic ovary syndrome (PCOS), but the importance of body size at ages before PCOS is diagnosed is unknown. Objective: To investigate associations between a woman’s own birthweight, childhood body mass index (BMI), height and growth patterns in relation to her risk of PCOS. Methods: We included 65,665 girls from the Copenhagen School Health Records Register, born in the period 1960–1996, with information on birthweight and measured weight and height at the ages of 7–13 years. Overweight was defined using International Obesity Task Force (IOTF) criteria. From the Danish National Patient Register, 606 women aged 15–50 years were identified. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated by Cox regression analysis. Results: Birthweight was not associated with PCOS. At the age of 7–13 years, girls with overweight had a higher risk of developing PCOS than girls without overweight; HR 2.83 (95% CI 2.34–3.42) at age 7 years and 2.99 (95% CI 2.38–3.76) at age 13 years. Furthermore, girls with overweight at both 7 and 13 years had a higher risk of developing PCOS than girls without overweight or overweight at only one age. Height was positively associated with PCOS risk at all ages. Girls who were persistently tall or changed from tall to average height had a higher risk of developing PCOS than girls with average height growth. Conclusion: Overweight and tall stature in childhood are positively associated with PCOS risk, but birthweight is not

    A novel splice-affecting HNF1A variant with large population impact on diabetes in Greenland

    Get PDF
    Background: The genetic disease architecture of Inuit includes a large number of common high-impact variants. Identification of such variants contributes to our understanding of the genetic aetiology of diseases and improves global equity in genomic personalised medicine. We aimed to identify and characterise novel variants in genes associated with Maturity Onset Diabetes of the Young (MODY) in the Greenlandic population. Methods: Using combined data from Greenlandic population cohorts of 4497 individuals, including 448 whole genome sequenced individuals, we screened 14 known MODY genes for previously identified and novel variants. We functionally characterised an identified novel variant and assessed its association with diabetes prevalence and cardiometabolic traits and population impact. Findings: We identified a novel variant in the known MODY gene HNF1A with an allele frequency of 1.9% in the Greenlandic Inuit and absent elsewhere. Functional assays indicate that it prevents normal splicing of the gene. The variant caused lower 30-min insulin (β = −232 pmol/L, βSD = −0.695, P = 4.43 × 10−4) and higher 30-min glucose (β = 1.20 mmol/L, βSD = 0.441, P = 0.0271) during an oral glucose tolerance test. Furthermore, the variant was associated with type 2 diabetes (OR 4.35, P = 7.24 × 10−6) and HbA1c (β = 0.113 HbA1c%, βSD = 0.205, P = 7.84 × 10−3). The variant explained 2.5% of diabetes variance in Greenland. Interpretation: The reported variant has the largest population impact of any previously reported variant within a MODY gene. Together with the recessive TBC1D4 variant, we show that close to 1 in 5 cases of diabetes (18%) in Greenland are associated with high-impact genetic variants compared to 1–3% in large populations.publishedVersio

    Changing genetic architecture of body mass index from infancy to early adulthood : an individual based pooled analysis of 25 twin cohorts

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Body mass index (BMI) shows strong continuity over childhood and adolescence and high childhood BMI is the strongest predictor of adult obesity. Genetic factors strongly contribute to this continuity, but it is still poorly known how their contribution changes over childhood and adolescence. Thus, we used the genetic twin design to estimate the genetic correlations of BMI from infancy to adulthood and compared them to the genetic correlations of height. Methods: We pooled individual level data from 25 longitudinal twin cohorts including 38,530 complete twin pairs and having 283,766 longitudinal height and weight measures. The data were analyzed using Cholesky decomposition offering genetic and environmental correlations of BMI and height between all age combinations from 1 to 19 years of age. Results: The genetic correlations of BMI and height were stronger than the trait correlations. For BMI, we found that genetic correlations decreased as the age between the assessments increased, a trend that was especially visible from early to middle childhood. In contrast, for height, the genetic correlations were strong between all ages. Age-to-age correlations between environmental factors shared by co-twins were found for BMI in early childhood but disappeared altogether by middle childhood. For height, shared environmental correlations persisted from infancy to adulthood. Conclusions: Our results suggest that the genes affecting BMI change over childhood and adolescence leading to decreasing age-to-age genetic correlations. This change is especially visible from early to middle childhood indicating that new genetic factors start to affect BMI in middle childhood. Identifying mediating pathways of these genetic factors can open possibilities for interventions, especially for those children with high genetic predisposition to adult obesity.Peer reviewe

    Changing genetic architecture of body mass index from infancy to early adulthood: an individual based pooled analysis of 25 twin cohorts

    Get PDF
    BACKGROUND: Body mass index (BMI) shows strong continuity over childhood and adolescence and high childhood BMI is the strongest predictor of adult obesity. Genetic factors strongly contribute to this continuity, but it is still poorly known how their contribution changes over childhood and adolescence. Thus, we used the genetic twin design to estimate the genetic correlations of BMI from infancy to adulthood and compared them to the genetic correlations of height. METHODS: We pooled individual level data from 25 longitudinal twin cohorts including 38,530 complete twin pairs and having 283,766 longitudinal height and weight measures. The data were analyzed using Cholesky decomposition offering genetic and environmental correlations of BMI and height between all age combinations from 1 to 19 years of age. RESULTS: The genetic correlations of BMI and height were stronger than the trait correlations. For BMI, we found that genetic correlations decreased as the age between the assessments increased, a trend that was especially visible from early to middle childhood. In contrast, for height, the genetic correlations were strong between all ages. Age-to-age correlations between environmental factors shared by co-twins were found for BMI in early childhood but disappeared altogether by middle childhood. For height, shared environmental correlations persisted from infancy to adulthood. CONCLUSIONS: Our results suggest that the genes affecting BMI change over childhood and adolescence leading to decreasing age-to-age genetic correlations. This change is especially visible from early to middle childhood indicating that new genetic factors start to affect BMI in middle childhood. Identifying mediating pathways of these genetic factors can open possibilities for interventions, especially for those children with high genetic predisposition to adult obesity

    Twin's Birth-Order Differences in Height and Body Mass Index From Birth to Old Age : A Pooled Study of 26 Twin Cohorts Participating in the CODATwins Project

    Get PDF
    We analyzed birth order differences in means and variances of height and body mass index (BMI) in monozygotic (MZ) and dizygotic (DZ) twins from infancy to old age. The data were derived from the international CODATwins database. The total number of height and BMI measures from 0.5 to 79.5 years of age was 397,466. As expected, first-born twins had greater birth weight than second-born twins. With respect to height, first-born twins were slightly taller than second-born twins in childhood. After adjusting the results for birth weight, the birth order differences decreased and were no longer statistically significant. First-born twins had greater BMI than the second-born twins over childhood and adolescence. After adjusting the results for birth weight, birth order was still associated with BMI until 12 years of age. No interaction effect between birth order and zygosity was found. Only limited evidence was found that birth order influenced variances of height or BMI. The results were similar among boys and girls and also in MZ and DZ twins. Overall, the differences in height and BMI between first-and second-born twins were modest even in early childhood, while adjustment for birth weight reduced the birth order differences but did not remove them for BMI.Peer reviewe
    corecore