691 research outputs found

    The impact of diffusion on confined oscillated bubbly fluid

    Full text link
    We consider the dynamics of monodisperse bubbly fluid confined by two plane solid walls and subjected to small-amplitude high-frequency transversal oscillations. The frequency these oscillations is assumed to be high in comparison with typical relaxation times for a single bubble, but comparable with the eigenfrequency of volume oscillations. A time-averaged description accounting for mutual coupling of the phases and the diffusivity of bubbles is applied. We find nonuniform steady states with the liquid quiescent on average. At relatively low frequencies accumulation of bubbles either at the walls or in planes oriented parallel to the walls is detected. These one-dimensional states are shown to be unstable. At relatively high frequencies the bubbles accumulate at the central plane and the solution is stable.Comment: 12 pages, 9 figures, submitted to Phys. Fluid

    Subsynoptic-scale features associated with extreme surface gusts in UK extratropical cyclone events

    Get PDF
    Numerous studies have addressed the mesoscale features within extratropical cyclones (ETCs) that are responsible for the most destructive winds, though few have utilized surface observation data, and most are based on case studies. By using a 39-station UK surface observation network, coupled with in-depth analysis of the causes of extreme gusts during the period 2008–2014, we show that larger-scale features (warm and cold conveyer belts) are most commonly associated with the top 1% of UK gusts but smaller-scale features generate the most extreme winds. The cold conveyor belt is far more destructive when joining the momentum of the ETC, rather than earlier in its trajectory, ahead of the approaching warm front. Sting jets and convective lines account for two thirds of severe surface gusts in the UK

    Global Existence and Regularity for the 3D Stochastic Primitive Equations of the Ocean and Atmosphere with Multiplicative White Noise

    Full text link
    The Primitive Equations are a basic model in the study of large scale Oceanic and Atmospheric dynamics. These systems form the analytical core of the most advanced General Circulation Models. For this reason and due to their challenging nonlinear and anisotropic structure the Primitive Equations have recently received considerable attention from the mathematical community. In view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the Primitive Equations and more generally. In this work we study a stochastic version of the Primitive Equations. We establish the global existence of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, LtpLxqL^{p}_{t}L^{q}_{x} estimates on the pressure and stopping time arguments.Comment: To appear in Nonlinearit

    Acoustic force measurements on polymer-coated microbubbles in a microfluidic device

    Get PDF
    This work presents an acoustofluidic device for manipulating coated microbubbles, designed for the simultaneous use of optical and acoustical tweezers. A comprehensive characterization of the acoustic pressure in the device is presented, obtained by the synergic use of different techniques in the range of acoustic frequencies where visual observations showed aggregation of polymer-coated microbubbles. In absence of bubbles, the combined use of laser vibrometry and finite element modelling supported a non-invasive measurement of the acoustic pressure and an enhanced understanding of the system resonances. Calibrated holographic optical tweezers were used for direct measurements of the acoustic forces acting on an isolated microbubble, at low driving pressures, and to confirm the spatial distribution of the acoustic field. This allowed quantitative acoustic pressure measurements by particle tracking, using polystyrene beads, and an evaluation of the related uncertainties. This process facilitated the extension of tracking to microbubbles, which have a negative acoustophoretic contrast factor, allowing acoustic force measurements on bubbles at higher pressures than optical tweezers, highlighting four peaks in the acoustic response of the device. Results and methodologies are relevant to acoustofluidic applications requiring a precise characterization of the acoustic field and, in general, to biomedical applications with microbubbles or deformable particles

    Intestinal epithelial stem cells do not protect their genome by asymmetric chromosome segregation

    Get PDF
    The idea that stem cells of adult tissues with high turnover are protected from DNA replication-induced mutations by maintaining the same 'immortal' template DNA strands together through successive divisions has been tested in several tissues. In the epithelium of the small intestine, the provided evidence was based on the assumption that stem cells are located above Paneth cells. The results of genetic lineage-tracing experiments point instead to crypt base columnar cells intercalated between Paneth cells as bona fide stem cells. Here we show that these cells segregate most, if not all, of their chromosomes randomly, both in the intact and in the regenerating epithelium. Therefore, the 'immortal' template DNA strand hypothesis does not apply to intestinal epithelial stem cells, which must rely on other strategies to avoid accumulating mutations

    History of climate modeling

    Full text link
    The history of climate modeling begins with conceptual models, followed in the 19th century by mathematical models of energy balance and radiative transfer, as well as simple analog models. Since the 1950s, the principal tools of climate science have been computer simulation models of the global general circulation. From the 1990s to the present, a trend toward increasingly comprehensive coupled models of the entire climate system has dominated the field. Climate model evaluation and intercomparison is changing modeling into a more standardized, modular process, presenting the potential for unifying research and operational aspects of climate science. WIREs Clim Change 2011 2 128–139 DOI: 10.1002/wcc.95 For further resources related to this article, please visit the WIREs websitePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79438/1/95_ftp.pd

    Meridional Circulation and Global Solar Oscillations

    Get PDF
    We investigate the influence of large-scale meridional circulation on solar p-modes by quasi-degenerate perturbation theory, as proposed by \cite{lavely92}. As an input flow we use various models of stationary meridional circulation obeying the continuity equation. This flow perturbs the eigenmodes of an equilibrium model of the Sun. We derive the signatures of the meridional circulation in the frequency multiplets of solar p-modes. In most cases the meridional circulation leads to negative average frequency shifts of the multiplets. Further possible observable effects are briefly discussed.Comment: 14 pages, 5 figures, submittted to Solar Physics Topical Issue "HELAS
    • …
    corecore