39 research outputs found

    An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope

    Get PDF
    The Surface Water and Ocean Topography (SWOT) satellite mission planned for launch in 2020 will map river elevations and inundated area globally for rivers >100 m wide. In advance of this launch, we here evaluated the possibility of estimating discharge in ungauged rivers using synthetic, daily ‘‘remote sensing’’ measurements derived from hydraulic models corrupted with minimal observational errors. Five discharge algorithms were evaluated, as well as the median of the five, for 19 rivers spanning a range of hydraulic and geomorphic conditions. Reliance upon a priori information, and thus applicability to truly ungauged reaches, varied among algorithms: one algorithm employed only global limits on velocity and depth, while the other algorithms relied on globally available prior estimates of discharge. We found at least one algorithm able to estimate instantaneous discharge to within 35% relative root-mean-squared error (RRMSE) on 14/16 nonbraided rivers despite out-of-bank flows, multichannel planforms, and backwater effects. Moreover, we found RRMSE was often dominated by bias; the median standard deviation of relative residuals across the 16 nonbraided rivers was only 12.5%. SWOT discharge algorithm progress is therefore encouraging, yet future efforts should consider incorporating ancillary data or multialgorithm synergy to improve results

    Exploring the Factors Controlling the Error Characteristics of the Surface Water and Ocean Topography Mission Discharge Estimates

    Get PDF
    The Surface Water and Ocean Topography (SWOT) satellite mission will measure river width, water surface elevation, and slope for rivers wider than 50–100 m. SWOT observations will enable estimation of river discharge by using simple flow laws such as the Manning-Strickler equation, complementing in situ streamgages. Several discharge inversion algorithms designed to compute unobserved flow law parameters (e.g., friction coefficient and bathymetry) have been proposed, but to date, a systematic assessment of factors controlling algorithm performance has not been conducted. Here, we assess the performance of the five algorithms that are expected to be used in the construction of the SWOT product. To perform this assessment, we used synthetic SWOT observations created with hydraulic model output corrupted with SWOT-like error. Prior information provided to the algorithms was purposefully limited to an estimate of mean annual flow (MAF), designed to produce a “worst case” benchmark. Prior MAF error was an important control on algorithm performance, but discharge estimates produced by the algorithms are less biased than the MAF; thus, the discharge algorithms improve on the prior. We show for the first time that accuracy and frequency of remote sensing observations are less important than prior bias, hydraulic variability among reaches, and flow law accuracy in governing discharge algorithm performance. The discharge errors and error sensitivities reported herein are a bounding benchmark, representing worst possible expected errors and error sensitivities. This study lays the groundwork to develop predictive power of algorithm performance, and thus map the global distribution of worst-case SWOT discharge accuracy

    Engaging the user community for advancing societal applications of the surface water ocean topography mission

    Get PDF
    Scheduled for launch in 2021, the Surface Water and Ocean Topography (SWOT) mission will be a truly unique mission that will provide high-temporal-frequency maps of surface water extents and elevation variations of global water bodies (lakes/reservoirs, rivers, estuaries, oceans, and sea ice) at higher spatial resolution than is available with current technologies (Biancamaria et al. 2016; Alsdorf et al. 2007). The primary instrument on SWOT is based on a Ka-band radar interferometer (KaRIN), which uses radar interferometery technology. The satellite will fly two radar antennas at either end of a 10-m (33 ft) mast, allowing it to measure the elevation of the surface along a 120-km (75 mi)-wide swath below. The availability of high-frequency and high-resolution maps of elevations and extents for surface water bodies and oceans will present unique opportunities to address numerous societally relevant challenges around the globe (Srinivasan et al. 2015). These opportunities may include such diverse and far-ranging applications as fisheries management, flood inundation mapping/risk mitigation/forecasting, wildlife conservation, global data assimilation for improving forecast of ocean tides and weather, reservoir management, climate change impacts and adaptation, and river discharge estimation, among others

    The role of floods and droughts on riverine ecosystems under a changing climate

    Get PDF
    Floods and droughts are key driving forces shaping aquatic ecosystems. Climate change may alter key attributes of these events and consequently health and distri‐ bution of aquatic species. Improved knowledge of biological responses to different types of floods and droughts in rivers should allow the better prediction of the eco‐ logical consequences of climate change‐induced flow alterations. This review high‐ lights that in unmodified ecosystems, the intensity and direction of biological impacts of floods and droughts vary, but the overall consequence is an increase in biological diversity and ecosystem health. To predict the impact of climate change, metrics that allow the quantitative linking of physical disturbance attributes to the directions and intensities of biological impacts are needed. The link between habitat change and the character of biological response is provided by the frequency of occurrence of the river wave characteristic—that is the event's predictability. The severity of impacts of floods is largely related to the river wave amplitude (flood magnitude), while the impact of droughts is related to river wavelength (drought duration

    Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America

    No full text
    Extreme weather continues to preoccupy society as a formidable public safety concern bearing huge economic costs. While attention has focused on global climate change and how it could intensify key elements of the water cycle such as precipitation and river discharge, it is the conjunction of geophysical and socioeconomic forces that shapes human sensitivity and risks to weather extremes. We demonstrate here the use of high-resolution geophysical and population datasets together with documentary reports of rainfall-induced damage across South America over a multi-decadal, retrospective time domain (1960–2000). We define and map extreme precipitation hazard, exposure, affectedpopulations, vulnerability and risk, and use these variables to analyse the impact of floods as a water security issue. Geospatial experiments uncover major sources of risk from natural climate variability and population growth, with change in climate extremes bearing a minor role. While rural populations display greatest relative sensitivity to extreme rainfall, urban settings show the highest rates of increasing risk. In the coming decades, rapid urbanization will make South American cities the focal point of future climate threats but also an opportunity for reducing vulnerability, protecting lives and sustaining economic development through both traditional and ecosystem-based disaster risk management systems

    QCam: sUAS-Based Doppler Radar for Measuring River Discharge

    No full text
    The U.S. Geological Survey is actively investigating remote sensing of surface velocity and river discharge (discharge) from satellite-, high altitude-, small, unmanned aircraft systems- (sUAS or drone), and permanent (fixed) deployments. This initiative is important in ungaged basins and river reaches that lack the infrastructure to deploy conventional streamgaging equipment. By coupling alternative discharge algorithms with sensors capable of measuring surface velocity, streamgage networks can be established in regions where data collection was previously impractical or impossible. To differentiate from satellite or high-altitude platforms, near-field remote sensing is conducted from sUAS or fixed platforms. QCam is a Doppler (velocity) radar mounted and integrated on a 3DR© Solo sUAS. It measures the along-track surface velocity by spot dwelling in a river cross section at a vertical where the maximum surface velocity is recorded. The surface velocity is translated to a mean-channel (mean) velocity using the probability concept (PC), and discharge is computed using the PC-derived mean velocity and cross-sectional area. Factors including surface-scatterer quality, flight altitude, propwash, wind drift, and sample duration may affect the radar-returns and the subsequent computation of mean velocity and river discharge. To evaluate the extensibility of the method, five science flights were conducted on four rivers of varying size and dynamics and included the Arkansas River, Colorado (CO), USA (two events); Salcha River near Salchaket, Alaska (AK), USA; South Platte River, CO, USA; and the Tanana River, AK, USA. QCam surface velocities and river discharges were compared to conventional streamgaging methods, which represented truth. QCam surface velocities for the Arkansas River, Salcha River, South Platte River, and Tanana River were 1.02 meters per second (m/s) and 1.43 m/s; 1.58 m/s; 0.90 m/s; and 2.17 m/s, respectively. QCam discharges (and percent differences) were 9.48 (0.3%) and 20.3 cubic meters per second (m3/s) (2.5%); 62.1 m3/s (−10.4%); 3.42 m3/s (7.3%), and 1579 m3/s (−18.8%). QCam results compare favorably with conventional streamgaging and are a viable near-field remote sensing technology that can be operationalized to deliver real-time surface velocity, mean velocity, and river discharge, if cross-sectional area is available
    corecore