
Abstract  The Surface Water and Ocean Topography (SWOT) satellite mission will measure river 
width, water surface elevation, and slope for rivers wider than 50–100 m. SWOT observations will 
enable estimation of river discharge by using simple flow laws such as the Manning-Strickler equation, 
complementing in situ streamgages. Several discharge inversion algorithms designed to compute 
unobserved flow law parameters (e.g., friction coefficient and bathymetry) have been proposed, but to 
date, a systematic assessment of factors controlling algorithm performance has not been conducted. 
Here, we assess the performance of the five algorithms that are expected to be used in the construction 
of the SWOT product. To perform this assessment, we used synthetic SWOT observations created with 
hydraulic model output corrupted with SWOT-like error. Prior information provided to the algorithms 
was purposefully limited to an estimate of mean annual flow (MAF), designed to produce a “worst case” 
benchmark. Prior MAF error was an important control on algorithm performance, but discharge estimates 
produced by the algorithms are less biased than the MAF; thus, the discharge algorithms improve on 
the prior. We show for the first time that accuracy and frequency of remote sensing observations are 
less important than prior bias, hydraulic variability among reaches, and flow law accuracy in governing 
discharge algorithm performance. The discharge errors and error sensitivities reported herein are a 
bounding benchmark, representing worst possible expected errors and error sensitivities. This study 
lays the groundwork to develop predictive power of algorithm performance, and thus map the global 
distribution of worst-case SWOT discharge accuracy.

Plain Language Summary  Measurements of river flow are essential for the allocation 
of water resources, flood and drought forecast and mitigation efforts, and others. Access to local 
measurements is not ubiquitous and is particularly difficult for rivers flowing in remote locations or 
across country borders. Measurements taken by satellites such as the upcoming Surface Water and Ocean 
Topography (SWOT) mission will offer freely available global data and methods to estimate discharge 
using such data have been in development. We conducted a comprehensive assessment of the accuracy 
and precision of five SWOT discharge inversion algorithms under three conditions: (a) ideal, that is if 
the measurements were available once a day and contained no error; (b) with no measurement error but 
changing how frequently the measurements were taken, and (c) under different levels of measurement 
error. We found that the methods consistently improved over the initial estimates of discharge and we 
identified river hydraulic properties that increase the chances of successful parameter estimation. We 
also found that despite the use of very similar discharge equations, the subtle differences in equations 
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1.  Introduction
As most global rivers are ungaged (Pavelsky et al., 2014), methods to complement the sparse network of 
in situ observations that rely on remotely sensed data have been developed (a review of such methods is 
presented by Gleason & Durand, 2020). The upcoming Surface Water and Ocean Topography (SWOT) sat-
ellite mission, with an expected launch in 2022, will augment the capabilities of the current constellation 
of satellites by providing an observation-based estimate of global discharge for rivers wider than 100 m and 
possibly as narrow as 50 m (e.g., Biancamaria et al., 2010, 2016; Pavelsky et al., 2014). The scientific impact 
of SWOT discharge will be determined, in large part, by its accuracy. In general, discharge accuracy will be 
governed by three factors (Yoon et al., 2016): accuracy of flow laws used to translate SWOT measurements 
into discharge, the accuracy of the unobservable flow law parameters estimated by the discharge inversion 
algorithms, and the accuracy of the SWOT observations of height, width, and slope.

Because parameter accuracy tends to dominate the discharge error budget (Yoon et al., 2016), understand-
ing the factors that determine inversion algorithm accuracy is vital to the SWOT mission. Past studies (e.g., 
Bonnema et al., 2016; Durand et al., 2016; Oubanas, Gejadze, Malaterre, Durand, et al., 2018) have explored 
SWOT discharge inversion algorithm accuracy in ungaged basins but have not gone far enough in probing 
the controls on algorithm performance. Durand et al. (2016) tested five algorithms on a suite of 19 rivers us-
ing daily synthetic data created with hydraulic models, but without realistic levels of observation error, and 
found that at least one algorithm retrieved discharge with relative root mean square errors equal to or less 
than 35% on 14 out of the 16 non-braided rivers. While the authors identified specific algorithm deficiencies 
in some cases, they did not perform a systematic assessment of the controls on algorithm performance.

Tuozzolo, Lind, et al. (2019) showed that discharge algorithms are sensitive to the accuracy of prior infor-
mation. Indeed, all discharge algorithms leverage at least some prior information, typically mean annual 
flow (Durand et al., 2016). Most algorithms treat this prior information in the Bayesian sense; its uncertain-
ty is traded off against the information contained in the remote sensing observations, rather than simply 
accepting it as a “known” input (Hagemann et al., 2017). Some algorithms are also capable of incorporating 
additional prior information, such as expected discharge temporal variability and reach geomorphology. 
The exact configuration of which prior information will be used by which SWOT discharge inversion algo-
rithms during the SWOT mission is still to be determined and is under examination by the science team. 
In the meantime, this prior information is being incorporated into algorithms (e.g., Andreadis et al., 2020; 
Brinkerhoff et al., 2020), and as a result, discharge accuracies are improving. Additionally, we expect that 
as more prior information is included, the sensitivity to any individual piece of prior information will likely 
decrease. Thus, studies such as Durand et al. (2016) as well as the current study, which use only a single 
prior (mean annual flow) represent an upper bound on both the benchmark error metrics and the sensitiv-
ity of discharge error to priors. In other words, the discharge errors and error sensitivities reported herein 
represent a bounding benchmark, representing worst possible expected errors and error sensitivities.

This study explores the controls on algorithm performance defined in terms of retrieved discharge error, 
contrasting these error metrics with quantifiable reach properties, flow law errors, and quality of prior 
information. Further, we test the sensitivity of SWOT discharge algorithms to temporal sampling and to 
observation error, with the latter being estimated with a parameterized model for SWOT observation un-
certainty that takes into account the most important sources of error in SWOT observations of river height, 
width, and slope, such as the effects of layover, thermal noise, instrument resolution, and others. The bench-
marked discharge inversion algorithms are summarized in Section 2, Section 3 describes the experimental 
protocol, the construction of the synthetic test cases for each of the three phases of our study: Phase 1: 
idealized daily measurements (Section 3.3), Phase 2: varying temporal sampling settings (Section 3.4), and 
Phase 3: varying degrees of measurement uncertainty (Section 3.5). We present the results of each phase in 
Section 4, which ends with a discussion of future and ongoing algorithm development (4.4), followed up by 
our conclusions in Section 5.

FRASSON ET AL.

10.1029/2020WR028519

2 of 29

among the methods can be important. Finally, we found that at least two methods can work well with the 
expected amount of measurement error and frequency.
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2.  SWOT Discharge Inversion Algorithms
SWOT will make high precision measurements of river surface slope (Desai, 2018; Esteban-Fernandez, 2013) 
averaged to nominal 10 km reaches (Frasson et al., 2017; Montazem et al., 2019) as well as water surface 
elevation and river width, thus measuring most of the terms in the Manning-Strickler flow law for discharge 
estimation (Bjerklie et al., 2003). However, SWOT will not be able to directly measure river bathymetry 
or quantify channel friction, which need to be indirectly estimated for the calculation of river discharge. 
Figure 1a shows a mass-conserved set of reaches, that is, a set of contiguous reaches containing no known 
tributaries. Figure 1b provides a conceptual list of SWOT measurements and the quantities that need to be 
estimated by discharge inversion algorithms. Figure 1d illustrates the discharge production process, which 
occurs every time a new set of SWOT observations is collected. As opposed to the flow law parameter inver-
sion step (Figure 1c), which is only repeated at occasional reprocessing steps.

Several discharge inversion algorithms to estimate bathymetry and channel friction based on time series 
of SWOT measurements have been proposed. Here, we evaluate the five algorithms that are expected to 
run globally during the SWOT mission. The benchmarked algorithms are described in Sections 2.1–2.5 and 
summarized in Table 1. The evaluated algorithms can be grouped into three families: (a) Mass conserved 
Flow Law Inversion (McFLI) algorithms (Durand et al., 2014; Garambois & Monnier, 2015; Gleason & Du-
rand, 2020; Gleason et al., 2017; Hagemann et al., 2017), (b) data assimilation algorithms (e.g., Andreadis 
et al., 2007; Durand et al., 2008; Garambois et al., 2020; Larnier et al., 2020; Monnier et al., 2018; Oubanas, 
Gejadze, Malaterre, Durand, et al., 2018; Oubanas, Gejadze, Malaterre, & Mercier, 2018); and (c) “big data” 
methods.
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Figure 1.  Panel a: Example of a set of contiguous reaches along the Sacramento River containing no visible tributaries, thus suitable for discharge parameter 
inversion based on the Mass conserved Flow Law Inversion paradigm. Panel b: Visualization of the Surface Water and Ocean Topography (SWOT) observations 
over a generic set of three reaches at a given time “i” (top) and bottom showing a cross-sectional cut made at reach “j” and the decomposition of the cross-
sectional area into the unobservable fraction (A0,j) and an observable fraction δAi,j, derived from multitemporal observations of reach height and width. Panel 
c illustrates the flow law inversion step, when the unobservable fraction of the cross-sectional area and the friction parameters are estimated. Panel d: SWOT 
discharge production step which uses simple flow laws with parameters estimated by the different algorithms to produce discharge every time a new set of 
SWOT observations is collected. Base map data from Google, 2020.
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The McFLI methods evaluated here are the Metropolis-Manning (MetroMan) and the Bayesian At-many-sta-
tions-hydraulic-geometry Manning (BAM) algorithms. Both methods rely on invoking conservation of mass 
between a set of consecutive reaches to estimate channel friction parameters and a reference cross-sectional 
area of flow. However, the methods differ on the discretization of the continuity equation, the parameteri-
zation of friction, and the derivation of prior distributions for parameters.

Currently, two algorithms that rely on assimilating SWOT data into hydraulic models are expected to be 
used for discharge estimation at worldwide scales: the Hierarchical Variational Discharge Inference (HiV-
DI) and the SWOT Assimilated Discharge (SAD). The HiVDI algorithm operates at a higher resolution scale 
(node scale), with height and width measurements aggregated into equally spaced points located every 
200 m along the river centerline, which are assimilated into a 1D Saint-Venant model. In contrast to the SAD 
algorithm, which models flow at the SWOT reach scale using the gradually varied flow equations.

The final method that is currently expected to be operated by the SWOT mission is the Modified Optimized 
Manning Method Algorithm (MOMMA). MOMMA relies on extrapolation of geometric and hydraulic 
characteristics derived from large datasets in conjunction with SWOT data to estimate discharge. Figure 2 
shows the general flow of information and contrasts the assumptions made by the five examined discharge 
inversion algorithms. The inversion algorithms evaluated in our study are described in Sections 2.1–2.5.

2.1.  BAM: Bayesian At-Many-Stations-Hydraulic-Geometry Manning Algorithm

BAM is an evolution of the At-Many-stations-Hydraulic-Geometry (AMHG) algorithm initially proposed by 
Gleason and Smith (2014) and further explored by Gleason and Wang (2015) and by Brinkerhoff et al. (2019). 
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Algorithm Theoretical basis
Applied variables from 

observation Estimated variables Variable estimation method

BAM Manning flow resistance 
equation with constant 
n (Equation 1) and At-
Many-stations-Hydraulic-
Geometry (AMHG), 
Equation 2

Water surface width (W), 
slope (S), cross-sectional 
area anomaly (dA)

n, A0, AMGH: b, Wc, Qc Parameters optimized to preserve continuity 
between a set of reaches (assuming dQ/
dx = 0) using Hamiltonian Bayesian 
inference.

MetroMan Manning flow resistance 
with stage-dependent 
friction parameterization 
(Equation 3)

Water surface height (H), W, 
S, δA

na, b, A0 Parameters optimized to preserve continuity 
between a set of reaches as defined by 
Equation 4, using the Metropolis algorithm.

HiVDI 1D Saint-Venant and Manning 
flow resistance with depth 
dependent flow resistance 
(Equation 5)

H, W, S, δA a, b, A0 Calibration of Manning-Strickler equation using 
discharge obtained by assimilation of SWOT 
measurements into the 1-D Saint Venant 
model.

SAD Gradually varied flow equations 
(Equation 6) assuming 
friction slope that follows 
Manning-Strickler equation 
(Equation 7)

H, W, S Q Assimilation of SWOT observations into a 
steady-state, non-uniform hydraulic model 
using the Local Ensemble Transform Kalman 
Filter algorithm to estimate river discharge.

MOMMA Manning flow resistance 
with stage-dependent 
friction parameterization 
(Equation 9)

H, W, S nb, Hb, B Bankful height (Hb) is estimated by identifying 
breakpoints in the observed H versus W 
relationship. Height at 0 flow (B) is estimated 
by extrapolating the H versus W relationship 
to W = 0. Bankful flow friction is calibrated 
using the prior estimate of mean annual flow.

Notes. In this table, SWOT stands for the Surface Water and Ocean Topography mission. Description of the meaning the estimated variables can be found in 
each algorithm description: BAM in Section 2.1, MetroMan (2.2), HiVDI (2.3), SAD (2.4), MOMMA (2.5).
Abbreviations: BAM, Bayesian At-many-stations-hydraulic-geometry Manning; HiVDI, Hierarchical Variational Discharge Inference; MOMMA, Modified 
Optimized Manning Method Algorithm; SAD, SWOT Assimilated Discharge.

Table 1 
Summary of the Discharge Inversion Algorithms
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AMHG is designed to estimate river discharge based on measurements of river width using hydraulic ge-
ometry relationships, which were originally observed by Leopold and Maddock (1953). Since SWOT also 
measures water surface elevation and slopes, Hagemann et al. (2017) added the capability to estimate dis-
charge using the Manning-Strickler equation. The algorithm chooses between AMHG and Manning based 
on a width variability criterion (see Hagemann et al., 2017).

The version of BAM evaluated here uses the low Froude approximation (Garambois & Monnier, 2015; Larni-
er et al., 2020) for the estimation of the friction slope. This approximation, states that under low Froude 

FRASSON ET AL.

10.1029/2020WR028519

5 of 29

Figure 2.  Summary of the inversion algorithms evaluated in the present study. Panel a: general flow of information used by the two McFLI methods: 
BAM (described in Section 2.1) and MetroMan (Section 2.2). Panel b: illustration of the Hierarchical Variational Discharge Inference (HiVDI described in 
Section 2.3). Panel c: The Modified optimized Manning Method Algorithm (MOMMA described in Section 2.5). Panel d: Surface Water and Ocean Topography 
(SWOT) Assimilated Discharge (SAD, described in Section 2.4). In this panel, Q stands for discharge, Qwbm stands for the prior estimate of mean annual flow, 
Wi,j for the river width at time i, reach j, δAi,j represents the cross-sectional area anomaly with respect to an arbitrary reference level (see Figure 1b), and Hi,j and 
Si,j represent the water surface elevation and slope respectively. Panel e: list of symbols and previously non defined acronyms. Observations are at reach scale, 
which for the SWOT mission is approximately 10 km long with the exception of the VDA interactive process in panel B, which assimilates heights at the node 
scale, that is, equally spaced points located every 200 m along the river centerline.
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numbers, that is, less than 0.3, the friction slope can be approximated by the water surface slope. The imple-
mentation of the Manning-Strickler equation in BAM also assumes that the river width is much larger than 
the depth, which causes the wetted perimeter to reduce to the river width resulting in the following form of 
the Manning-Strickler and the AMHG equations:

   
5/3 2/3

0, , , ,
1

i j i j i j i jQ A A W S
n

� (1)



1

, bji j
i c

c

W
Q Q

W
� (2)

where n is the friction coefficient, assumed to be constant for all reaches within the inversion set and invari-
able in time, A0,j represents a reference cross-sectional area, which is unique for each reach, δAi,j represents 
the cross-sectional area anomaly with respect to the selected reference for a reach j at time i, Wi,j represents 
the top width of the reach j at time i, and Si,j represents the water surface slope. Additionally, Wc, Qc, bj, in 
Equation 2 represent the two AMHG parameters (Gleason & Wang, 2015) and the at-a-station hydraulic 
geometry coefficient, respectively. In Equations 1 and 2, the terms Wi,j and Si,j are observed by SWOT and 
δAi,j can be calculated from the time series of SWOT-observed water surface elevation and width. However, 
n, Qi, A0,j, Wc, and Qc need to be estimated by BAM.

Flow law parameter estimation is based on a Bayesian algorithm, which starts from prior distributions for 
discharge, Manning's n, reference cross-sectional area of flow, and the AMHG parameters and attempts to 
identify posterior distribution for these parameters given the SWOT observations. The acceptance or rejec-
tion of possible parameter values is guided by a likelihood function. This likelihood function is created by 
imposing the continuity equation to a set of mass-conserved reaches (e.g., Figure 1a), which is defined as a 
set of contiguous reaches with no known tributaries. The form of the continuity equation assumed by BAM 
neglects the cross-sectional area change with respect to time, essentially assuming that at a given time, the 
discharge in all reaches within a set is the same.

The prior distribution for A0 and for the AMHG and hydraulic geometry parameters are constructed using 
the HYDRoacoustic data set in support of the Surface Water and Ocean Topography satellite mission (HY-
DRoSWOT; Bjerklie et al., 2020; Canova et al., 2016) following Hagemann et al. (2017). BAM also requires 
truncation bounds on Qi, Qc, n, and A0,j, and the lognormal standard deviation of Q and bj in space and time. 
These were set as follows: For rivers with a maximum observed δAi,j of less than 2,000 m2, the lower and 
upper bounds on A0,j were set to 1 and 1,000 m2, respectively. The lower bound on Q was set assuming a 
minimum depth of 0.5 m and a minimum velocity of 0.5 m/s, reasonable assumptions for these large rivers. 
bsd was set to 0.2 (unitless), and upper bound on n was set to 0.05 following Chow (1959). Qsd was set based 
on Qwbm (prior estimate of mean annual flow) assuming a coefficient of variation of 1.

2.2.  MetroMan: Metropolis-Manning Algorithm

Similarly to BAM, the Metropolis-Manning (MetroMan) algorithm (Durand et al., 2014) uses a Bayesian 
inference framework to estimate the unobservable flow law parameters needed by the Manning-Strick-
ler equation to estimate discharge. However, unlike BAM, the version of MetroMan used in the present 
work allows n to vary in both time and space, in an attempt to account for the additional energy dissipa-
tion caused by spatial variability of hydraulic properties within a reach (Durand et al., 2016; Rodríguez 
et al., 2020; Tuozzolo, Langhorst, et al., 2019). Given the parameterization of friction, the assumption that 
width is much larger than depth, and that the friction slope can be approximated by the water surface slope 
(low Froude approximation), the Manning-Strickler equation used by MetroMan becomes:

 
   



5/3 2/3
0, , , ,

, , min,

1
i j i j i j i jbj

a j i j j

Q A A W S
n H H

� (3)

where na,j and bj are time invariant friction parameters estimated by MetroMan for each reach, A0,j is the 
reference cross-sectional area estimated by MetroMan for each reach in the domain, Hi,j, Wi,j, and Si,j are 
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the observations of water surface elevation, width, and slope for each reach j at each time i, and δAi,j the 
cross-sectional area anomaly for a reach j at time i computed from the time series of heights and widths. 
Additionally, when MetroMan applies a discretized version of the continuity equation for unsteady flow to 
the inversion domain, the algorithm retains both the derivative of discharge with respect to space and the 
time derivative of the cross-sectional area. This is in contrast to BAM that neglects the change in cross-sec-
tional area in time, leading to equal discharge for all reaches. The continuity equation at a reach j at a time 
i is discretized as:

 
 dn up 1, , 0

Δ Δ
i j i jQ Q A A

x t
� (4)

where Qdn represents the downstream discharge interpolated to the boundary between reaches j−1 and j, 
averaged between time steps i and i + 1, Qup represents the upstream discharge interpolated to the boundary 
between reaches j + 1 and j, averaged between time steps i and i + 1, Δx represents the reach length, Ai+1,j 
and Ai,j stand for the cross-sectional area for reach j at time steps i + 1 and i respectively, and Δt represents 
the time interval between time steps i + 1 and i. MetroMan uses the sum of the residues in Equation 4 com-
puted over the reaches within the inversion domain to construct a likelihood function, that guides the ac-
ceptance or rejection of parameter values for the construction of their posterior distributions (Equations 10 
and 12 in Durand et al., 2014).

The likelihood function used by MetroMan for parameter acceptance is inversely proportional to the sum of 
the left-hand side of Equation 4 applied to each of the reaches contained in the inversion domain.

2.3.  HiVDI: Hierarchical Variational Discharge Inference

HiVDI algorithm is presented by Larnier et al. (2020). HiVDI estimates flow law parameters by assimilating 
SWOT node heights and widths into a 1D Saint-Venant model using the variational data assimilation (VDA) 
framework described by Brisset et al. (2018) and Garambois et al. (2020). The VDA output includes optimal 
estimates of river discharge and reach averaged cross-sectional area. These outputs are used to calibrate a 
version of the Manning-Strickler equation:

    
5/3 2/3

, 0, , , ,
j

i j i j j i j i j i jQ d A A W S� (5)

where αj and βj are fit parameters describing how the Manning-Strickler friction coefficient varies with riv-
er depth, ,i jd  is the cross-sectional average river depth, computed by     1

, 0, , ,i j j i j i jd A A W , and all other 
terms are as defined in Equations 1 and 3.

2.4.  SAD: SWOT Assimilated Discharge

The SAD algorithm (Andreadis et al., 2020) assumes that the river channel profile observed by a SWOT 
overpass can be modeled by the gradually varied flow equations as presented by Chow (1959) with a general 
form of:

 


 
, 0, , ,

2
, ,1

i j j f i j

i j i j

d S S
x Fr� (6)

where So,j is the bed slope for a reach j, Sfi,j the friction slope at time i and reach j, di,j is the average depth, 
x the longitudinal distance, and Fri,j is the Froude number. SAD models the friction slope using the Man-
ning-Strickler equation:


2 2

, , 2 4 /3
, ,

j i
f i j

i j i j

n Q
S

A R
� (7)

where ,i jR  is the hydraulic radius, and other terms are as defined previously.
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The gradually varied flow equations are combined with prior distributions for bed elevation, discharge, 
friction coefficient, and channel geometry (via the channel shape parameter) to form the forward model in 
a data assimilation scheme that is the core of the discharge estimation. The prior distributions are estimated 
with a data-driven approach based on rejection sampling and geomorphological classification. The SWOT 
observations can then be assimilated into this prior model in order to derive the posterior distribution of 
discharge for the observed river reaches. The assimilation algorithm used by SAD is the Local Ensemble 
Transform Kalman Filter (LETKF) that can be implemented efficiently over large areas and has been shown 
to be superior to other Kalman Filter algorithms partly due to its explicit localization (Hunt et al., 2007). 
In its current implementation, SAD is an instantaneous data assimilation algorithm, where updates to the 
current state of the model do not affect future discharge estimates.

Within this framework, the posterior estimate of discharge at a time i (Qi
a) for each reach is estimated as:

   1a b b a bT o b
i i i i i i i iQ Q X P M Er m m� (8)

where Qi
b is the prior estimate of discharge at a time i, Xi

b are the prior ensemble perturbations of the state 
variable, Mi

b is similar to Xi
b but for model-predicted measurements, mi° are the SWOT measurements, 

mi
b are the model-predicted measurements, and Er is the measurement covariance matrix. The LETKF 

assimilation can include an additional regularization step that incorporates at-a-station hydraulic geometry 
relationships to better constrain the discharge estimates.

2.5.  MOMMA: Modified Optimized Manning Method Algorithm

The MOMMA algorithm is an updated version of the Mean Flow and Geomorphology (MFG) algorithm 
examined in previous SWOT discharge algorithm benchmarking experiments (Bonnema et al., 2016; Du-
rand et al., 2016). The MOMMA algorithm is designed to distinguish between in-bank and out-of-bank flow 
and therefore is dependent on identifying the bankfull stage and flow resistance (friction). MOMMA uses a 
modified version of the Manning-Strickler equation:

   
     

5/3

, , , ,
,

1
1i j i j j i j i j

i j

rQ H B W S
n r

� (9)

where r is the channel shape parameter also used by SAD. In MOMMA, the parameter r assumes the value 
of 2 based on the work of Bjerklie et al. (2020), and ni,j is computed based on an assumed logarithmic scaling 
function that is conceptually based on relative roughness (Lang et al., 2004; Limerinos, 1970):

  
        

,
, ,

,
1 b j j

i j b j
i j j

H B
n n log

H B
� (10)

Bj used in both Equations 9 and 10 represents the water surface elevation of zero flow, which is assumed to 
be equal to the intercept of second order polynomials fitted to observed pairs of water surface elevation and 
widths obtained for each reach. The term nb,j in Equation 10 is the friction coefficient at bankfull flow and 
Hb,j is the bankfull water surface elevation, estimated by identifying breakpoints in observed water surface 
elevation-width relationships. The bankfull flow friction is estimated using the empirical relation derived 
by Dudley (2004), and a prior estimate of mean annual flow.

3.  Methodology
3.1.  Hydraulic Models and Definition of Test Cases

In order to construct synthetic SWOT observations, we used output from 7 hydraulic models: the Gan-
ges-Brahmaputra-Meghna model (Maswood & Hossain, 2016; Sikder & Hossain, 2015), the combined Sac-
ramento River System model (Rogers, 2014), the Ohio River model (Adams et al., 2010), Iowa River model 
(Gilles et al., 2012), Missouri River model (USACE, 2015), Seine River model (Even et al., 1998, 2007), and 
Olentangy River model (Tuozzolo, Langhorst, et al., 2019). From each model, we isolated individual rivers, 
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extracting time series of cross-sectional top width, water surface elevation, area, and discharge, as well as 
the flow distance associated with the cross-sections. Each river was broken into mass-conserved test cases, 
hereafter referred to as cases, which are defined as a stretch of a river that contains no visible tributaries, 
allowing the application of either forms of the continuity equation assumed by BAM and MetroMan. An 
example of such segmentation is shown in Figure 4a for the Ohio River model. In all, 31 cases were con-
structed, covering a wide range of discharges, from 1 m3/s to 80,000 m3/s. The list of test cases and a sum-
mary of model properties are given in Table 2 and Figure 3 shows the approximate location of the test cases.

FRASSON ET AL.

10.1029/2020WR028519

9 of 29

Test case name
Hydraulic 

model
Width 

(m)
Number of 

cross-sections
Length 
(km)

Simulation 
length (days​)

Mean annual 
flow

Study 
phases

Reference
WBM 
(m3/s)

True 
(m3/s) 1 2 3

1 Ash Slough HEC-RAS 56 53 7.7 12 36 38 X Rogers (2014)

2 Berenda Slough HEC-RAS 43 62 11.4 12 36 16 X Rogers (2014)

3 Brahmaputra HEC-RAS 2,275 39 250.0 107 5,162 2,039 X X Maswood and Hossain (2016)

4 Chowchilla Canal HEC-RAS 78 74 26.1 12 36 21 X Rogers (2014)

5 Fresno River HEC-RAS 52 61 16.2 12 46 52 X Rogers (2014)

6 Grant Line Canal HEC-RAS 200 34 12.5 12 244 212 X Rogers (2014)

7 Iowa River HEC-RAS 157 201 32.3 366 147 158 X X X Gilles et al. (2012)

8 Jamuna HEC-RAS 5,066 39 224.7 250 16,623 20,974 X X X Maswood and Hossain (2016)

9 Kushiyara HEC-RAS 318 48 264.9 366 2,133 1,171 X X X Maswood and Hossain (2016)

10 Mariposa Bypass HEC-RAS 165 34 6.3 12 76 108 X Rogers (2014)

11 Merced River HEC-RAS 87 153 43.7 12 76 95 X Rogers (2014)

12 Middle River HEC-RAS 45 55 16.2 12 172 22 X Rogers (2014)

13 Mississippi HEC-RAS 746 133 95.1 162 2,459 5,496 X Adams et al. (2010)

14 Missouri upstream HEC-RAS 274 58 33.0 595 498 922 X X X USACE (2016)

15 Missouri midsection HEC-RAS 241 36 22.2 595 498 1,017 X X USACE (2016)

16 Missouri downstream HEC-RAS 247 58 33.0 595 498 1,033 X X X USACE (2016)

17 Ohio section 1 HEC-RAS 377 240 96.2 220 2,459 1,636 X X X Adams et al. (2010)

18 Ohio section 2 HEC-RAS 422 216 88.1 220 2,459 2,450 X X X Adams et al. (2010)

19 Ohio section 3 HEC-RAS 506 362 140.8 220 2,459 2,945 X X X Adams et al. (2010)

20 Ohio section 4 HEC-RAS 564 37 51.5 220 2,459 3,454 X X X Adams et al. (2010)

21 Ohio section 5 HEC-RAS 678 95 86.5 220 2,459 3,831 X X X Adams et al. (2010)

22 Ohio section 7 HEC-RAS 976 33 71.8 220 2,459 5,376 X X X Adams et al. (2010)

23 Ohio section 8 HEC-RAS 1,162 50 71.2 220 2,459 7,601 X X X Adams et al. (2010)

24 Olentangy HEC-RAS 36 115 6.4 13 26 3 X Tuozzolo et al. (2019)

25 Padma HEC-RAS 8,831 32 105.1 366 2,133 30,017 X X X Maswood and Hossain (2016)

26 San Joaquin HEC-RAS 272 403 57.1 12 155 208 X Rogers (2014)

27 San Joaquin 2 HEC-RAS 73 253 59.4 12 155 26 X Rogers (2014)

28 Seine Downstream ProSe 224 240 128.1 365 206 304 X X X Even et al. (2007)

29 Seine Upstream ProSe 162 219 84.6 365 206 197 X X X Even et al. (2007)

30 Stanislaus River HEC-RAS 114 55 24.3 12 155 101 X Rogers (2014)

31 Tuolumne River HEC-RAS 386 32 10.0 12 155 228 X Rogers (2014)

Table 2 
Summary of Test Case Properties, Including Average Domain Width, Number of Cross-Sections, Modeled Length, Number of Days for Which the Model Ran, 
Water Balance Model Estimates (WBM) of Mean Annual Flow and True Mean Flow, and Which Phases Used Each Test Case
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Each case is further segmented into reaches, which is the scale where flow law parameters estimated by 
the discharge algorithms in conjunction with the synthetic SWOT measurements are used to calculate dis-
charge. For this study, we use functional reaches following a segmentation criterion similar to the hydraulic 
controls reach definition method presented by Frasson et  al.  (2017). Here, we manually selected reach 
boundaries defined with the intent of minimizing slope heterogeneity within a reach, while including at 
least four cross-sections per reach. Additional boundaries were placed around visible hydraulic structures 
to isolate such structures as illustrated by Figure 4b.

Reach averaged height, width, cross-sectional area, and discharge were calculated by taking the arithmetic 
average of the corresponding values belonging to cross-sections within each reach. In the absence of meas-
urement error, the reach averaged slope was computed as the elevation loss throughout the reach divided 
by the reach length (Phases 1 and 2 described in Sections 3.3 and 3.4). When elevation errors are taken into 
consideration (Phase 3 described in Section 3.5), the reach averaged slopes are computed by fitting a linear 
polynomial to the cross-section heights. The resulting data set can be retrieved from Frasson et al. (2020).

3.2.  Experimental Protocol and Design

We subjected the algorithms to a strict experimental control in which the only information the algorithms 
received was a prior estimate of mean annual flow in addition to the SWOT synthetic measurements. This 
decision is in keeping with previous experimental design (i.e., Durand et al., 2016), and in order to con-
trol the number of experimental parameters. We acknowledge that many and much richer sources of pri-
or information exist, for example, flow quantiles other than mean annual flow are available globally as 
part of the Global Reach-Level A Priori Discharge Estimates for SWOT (GRADES) database created by Lin 
et al.  (2019), or, where available, in situ measurements of discharge and bathymetry, both of which can 
be used by the algorithms to provide better constraints for the unobservable flow law parameters. Howev-
er, this experimental design allows us to test algorithm capabilities under the most stringent scenario to 
achieve the following goals: (a) to identify controls of algorithm performance in ungaged basins (the worst 
case scenario), (b) to explore the effects of temporal sampling on the ability to retrieve discharge, and (c) to 
assess to what extent discharge algorithms are impacted by SWOT measurement error.

The prior estimates of mean annual flow (Qwbm), for each test case needed by the five evaluated discharge 
algorithms were obtained from a 50-year run of the global hydrological water balance model WBMsed (Co-
hen et al., 2014). No additional information was given to the discharge algorithms and no changes to the 
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Figure 3.  Location of the test cases used for algorithm benchmarking color coded by the phase or phases of the study for which each model is used. The 
test case names are: a: Grant Line Canal, b: Middle River, c: San Joaquin 2, d: Stanislaus, e: San Joaquin, f: Merced River, g: Tuolumne, h: Mariposa Bypass, i: 
Fresno River, j: Ash Slough, k: Berenda Slough, l: Chowchilla Canal, m: Missouri Upstream, n: Missouri Midsection, o: Missouri Downstream, p: Iowa River, 
q: Mississippi Intermediate, r–x: Ohio 8, Ohio 7, Ohio 5, Ohio4, Ohio3, Ohio2, Ohio 1 respectively, y: Olentangy, z: Seine Downstream, aa: Seine Upstream, 
bb: Brahmaputra, cc: Jamuna, dd: Padma, ee: Kushiyara. The locations are approximate due to the use of non-georeferenced hydraulic models. Test case 
characteristics in model references are included in Table 2.



Water Resources Research

algorithms were allowed once testing began. We evaluated the discharge algorithms in three phases, which 
differ on temporal sampling strategy and the presence or absence of measurement error. We averaged all 
discharge estimates across all reaches within each case, following Durand et al. (2016). We judged algorithm 
performance based on a set of metrics described in Section 3.6. Inversion results obtained with the tested 
algorithms for each of the three study phases can be downloaded from Frasson et al. (2020).

3.3.  Phase 1: Daily Sampling and No Measurement Error

In this phase, we ran the discharge algorithms using a set of synthetic observations that mirror SWOT meas-
urements of reach averaged heights, widths, and slopes, however, without added measurement uncertainty 
and assuming daily sampling. In addition to providing the best case scenario for our study by applying the 
algorithms in the absence of noise and with high frequency sampling, this phase has three objectives: to 
investigate how algorithm performance is impacted by the quality of the prior estimate of mean annual flow 
(Qwbm), assess how errors associated with the choice of the flow law used by each method affect algorithm 
performance, and to identify a predictor of inversion success.

3.3.1.  Effect of Flow Law Errors on Discharge Inversion

Two different forms of the Manning-Strickler equation are used by BAM, MetroMan, and HiVDI. While 
the version of BAM evaluated here assumes a constant value of n in both space and time, MetroMan and 
HiVDI implement a parameterization of the friction coefficient that allows it to vary from reach to reach 
and with depth. We computed the error associated with the flow law used by each algorithm by calibrating 
the friction coefficient parameters directly to the true discharge and cross-sectional area. For this exercise, 
we identified the values of the friction parameters that minimized the squared differences between the true 
discharge for each reach and a discharge estimated with the true values of reach averaged cross-sectional 
area, width, and water surface slope.
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Figure 4.  Panel a: the division of the Ohio River model into mass conserved cases. Line colors identify the different 
cases; note that reach 6 was used by Durand et al. (2016), therefore excluded from the present analysis. Each case 
contains multiple reaches. Panel shows the reach definition for the downstream Seine case. Short reaches shown in red 
were created to identify dams.
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After finding optimal friction coefficient parameters for each of the flow law formulations, that is, Equa-
tions 1, 3, and 5, we estimated discharge for each reach and time step using the optimal friction param-
eters and the true reach averaged values of cross-sectional area, width, and slope. Since optimal friction 
parameters and true reach averaged cross-sectional area were used in conjunction with error-free synthetic 
observations of width and slope, the remaining differences between the true discharge and the estimated 
discharge are caused by the assumed form of the flow law. Thus, this exercise results in an estimate of the 
error due to the structure of the flow law itself, measured in terms of normalized root mean squared error 
defined in Section 3.6, separate from the error in the parameters and measurement error. The true cross-sec-
tional areas and discharges are used solely for the identification of optimal parameters and the estimation 
of the error associated with the use of either parameterizations of channel friction. The values of true 
cross-sectional areas and discharges were not used to inform any of the parameter inversions conducted in 
Phases 1, 2, and 3.

3.3.2.  Predicting Inversion Success—The Importance of Hydraulic Spatial Variability

In the presentation of early McFLI discharge inversion methods, Durand et al. (2010) and Garambois and 
Monnier (2015) stated that sufficient slope variability is required for the joint estimation of bathymetry and 
discharge. We expanded on this concept by evaluating the spatial variability of two additional properties: 
top width at median flow, and cross-sectional area at the lowest positive flow rate, quantified by their coef-
ficients of variation computed between reaches within a test case.

We hypothesized that cases with high spatial variability of at least one of the three hydraulic parameters 
should yield successful inversions, whereas those with low spatial variability should not be successful. We 
defined a successful discharge inversion as an inversion that results in a lower absolute value of the normal-
ized bias (see Section 3.6) as compared with the prior estimate of mean annual flow (Qwbm). We define high 
and low spatial variability thresholds in terms of the statistical percentiles of the coefficient of variation of 
each property across all cases considered.

The selection of the variability threshold was conducted based on the inspection of Receiver Operating 
Characteristic curves (ROC; Fawcett, 2006) constructed for each algorithm. The ROC was created by chang-
ing the high variability threshold from the 0th percentile to the 100th percentile, computing the number 
of true positives, that is, cases with high spatial variability of at least one hydraulic property that showed 
normalized discharge bias reductions, and the number of false positives, that is, cases with high spatial var-
iability of at least one hydraulic property that showed increased normalized discharge biases. A curve for 
each algorithm was created by plotting the ratio between the false positives and the total number of unsuc-
cessful inversions versus the ratio between the true positives and the total number of successful inversions.

When the high variability threshold is set to the 0th percentile, all cases are classified as having high varia-
bility, leading to a ratio between true positives and the total number of positives equal to 1. However, all un-
successful inversions are also classified as high variability, leading to a ratio between false positives and the 
number of unsuccessful inversions equal to 1. As the high variability threshold increases, the true positive 
and false positive ratios tend to decrease. Curves that track the 1:1 line indicate that the predictor is no better 
than guessing, whereas curves that fall above and to the left of the 1:1 line indicate that the predictor has 
more skill than random selections. The optimal threshold depends on the user tolerance for false positives 
and the need for detection of true positives. For our study, we selected the same high variability threshold 
for all hydraulic properties and algorithms, with a value that aimed to place all algorithms as far (in terms 
of Euclidian distance) away from the 1:1 line in the ROC curve as possible.

3.4.  Phase 2: Gradual Degradation in Sampling Frequency Without Measurement Uncertainty

In order to explore the effect of satellite revisit time, we created noise-free datasets at seven different sam-
pling frequencies: 2, 3, 4, 5, 7, 10, and 21 days. The latter four sampling strategies cover the typical range of 
SWOT sampling frequencies (Biancamaria et al., 2016). The resampling was done by assuming that the first 
day was observed and from there, a new observation would occur at the desired time sampling in regular 
time steps. Figure S1, included in the supporting information, shows an example of the temporal sampling 
for the Iowa River case. While SWOT sampling of a particular location in time will in fact be irregular (e.g., 
Frasson et al., 2019), this irregularity in and of itself should not affect algorithm performance; thus, the 
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regular sampling frequencies used in this study should provide a reasonable measure of the effect of sam-
pling frequency on algorithm performance.

Test cases extracted from the combined Sacramento River System, the Olentangy, and the Brahmaputra 
models had short durations, which when downsampled do not result in at least six observations, the min-
imum number of observations for which BAM, HiVDI, and MetroMan are known to work (e.g., Tuozzolo, 
Lind, et al., 2019). Therefore, cases extracted from these models were not included in the set of 16 models 
used in Phase 2 as shown by Table 2.

3.5.  Phase 3: Increasing Measurement Error

The purpose of this phase is to evaluate how measurement uncertainty impacts discharge algorithm perfor-
mance. To address this question, we applied the error model presented by Durand et al. (2020) to generate 
height and width errors initially at the cross-section scale, increasing the error levels from half to full and 
to 1.5 times the estimated SWOT errors. Noisy cross-sectional heights are used to compute reach slope and 
height and noisy cross-sectional widths are used to compute the reach averaged width. Width errors due to 
misclassification of surfaces (see Grippa et al., 2019) are ignored in this study.

The cross-section height errors account for three main elements: layover error, thermal noise, and system-
atic errors. We compute the first two elements using the parameterized error model described by Durand 
et al. (2020) which we illustrate in Figure 5a, whereas the systematic errors accounting for media delays, 
spacecraft roll, and others are taken from the SWOT error budget document (Esteban-Fernandez, 2013). 
The position of a cross-section within the swath determines the cross-track and along track resolutions, 
which combined with the time-variable width and the distance between cross-sections, allow us to com-
pute how many pixels are associated with a cross-section at a given point in time. Next, we computed the 
fraction of the cross-section that is affected by layover. The important factors for this calculation are the 
river orientation with respect to the swath, the topographic roughness (measured as described by Durand 
et al., 2020), and the number of pixels associated with a cross-section. The effective signal-to-noise ratio var-
ies significantly across the swath, and is combined with the fraction of the node compromised by layover to 
compute the complex-valued interferometric coherence, which in turn exerts a direct control on error levels 
in interferometry as described by for example, Rosen et al. (2000).

The random height error Eh for a cross-section j at time i is drawn from a normal distribution with zero 
mean and standard deviation equal to σhi,j; σhi,j is computed from the interferometric coherence. Layover 
bias hLi,j is also computed from interferometric coherence, as described by Durand et al. (2020). The sys-
tematic height errors due to media delays, spacecraft roll, and other sources are assumed to be constant for 
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Figure 5.  Cross-section height and width error model. Panel (a) schematics illustrating the height error model (Durand et al., 2020). Panel (b) dependence 
of the width root mean square error (RMSE) on cross-track position based on simulated Surface Water and Ocean Topography (SWOT) returns described by 
Frasson et al. (2017). In addition to the modeled errors, systematic biases accounting for atmospheric conditions, spacecraft roll, and others are taken from 
Esteban-Fernandez (2013).
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all cross-sections but variable in time. Therefore, it assumes the form of Esi, which is normally distributed 
with 0 mean and standard deviation of 8.897 cm, in accordance to the SWOT error budget document (Este-
ban-Fernandez, 2013). The synthetic SWOT observation of cross-sectional height Ĥi,j is calculated by adding 
error terms to the true height (Hi,j):

   , , , ,
ˆ

i j i j Li j i j iH H h Er Es� (11)

For the derivation of realistic width errors, we analyzed two high fidelity SWOT simulations documented 
by Frasson et al. (2017) and Domeneghetti et al. (2018): one over the Sacramento River, which runs mostly 
parallel to the ground track, and the Po River, which runs almost perpendicularly to the relevant SWOT 
ground tracks. We computed the root mean square errors (RMSE) at the node scale available from the sim-
ulations, which is a spatial scale similar to our cross-sections. Figure 5b shows the width RMSE compared 
to the cross-track distance for both models, to which we fitted a model with the following functional form:
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where σwij is the width standard deviation at time i for the cross-section j, s is the cross-track distance in 
kilometers, and a and b are fit parameters found to be equal to 1.115∙106 m km4 and 17.6 m respectively.

The cross-track distance controls the size of the pixels, which along with classification errors dominate 
width errors. Classification errors are controlled by the contrast between water and land, as well as the 
smoothness of the water surface, which under especially calm wind and flow conditions can cause specular 
reflection, a situation referred to as dark water. The contrast between land and water for the two simulations 
was assumed to be described by a water-land scattering brightness ratio of 15, which is not uncommon at 
the SWOT incidence angle according to ranges of values presented by Ulaby and Dobson (1989) and Fjørtoft 
et al. (2014).

Finally, the reach slopes were estimated using the slope of the linear fit over the noisy cross-section heights 
and reach averaged heights were computed using the same linear fit evaluated at the center of the reach. 
Reach widths were simply computed as the arithmetic average of the widths of cross-sections belonging to 
each reach. An example of the error statistics for height, width, and slope for the Iowa River case is shown 
in Figure S2 (supporting information) with the time-varying cross-sectional height error statistics shown in 
the Movie S3. Noisy reach-averaged heights, widths, and slopes alongside the prior estimate of mean annual 
flow were given to each discharge algorithm. As in previous phases, the estimated discharge is averaged in 
space for the entire case, which is compared with the true discharge.

3.6.  Error Metrics

The Nash-Sutcliff Efficiency (NSE) was computed as:
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where Qi stands for the estimated case-averaged discharge at time i, which is calculated as:
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In Equation 14, Nr represents the number of reaches used by the discharge algorithm, and Qi,j is the estimat-
ed discharge for reach j at time i; QTi represents the case-averaged true discharge computed as:
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where QTi,j is the true reach averaged discharge for reach j at time i; and TQ  is the time and case averaged 
true discharge, computed by averaging QTi along the time steps.

Similarly, the normalized root mean square error (NRMSE) is computed as:
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where Nt stands for the number of time steps.

The normalized bias (nbias) is computed as:
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And the prior normalized bias (nbiasWBM) is calculated as:
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Finally, the normalized standard deviation of residuals (nσe, also known as standard error) is represented 
by:
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where Ei represents the discharge error at time i computed as Qi−QTi, and E represents the time-averaged 
discharge error.

4.  Results and Discussion
4.1.  Phase 1: Daily Sampling and No Measurement Error

4.1.1.  Evaluation of the Retrieved Hydrographs and Summary of Algorithm Performance

Figure 6 illustrates the algorithm capabilities for daily, error free observations by showing six example hy-
drographs produced by the McFLI and data assimilation algorithms: MetroMan, BAM, HiVDI, and SAD, 
alongside the prior estimate of discharge, and the discharge extracted from the hydraulic model (referred as 
Truth in the plot). Generally, the algorithms track the flow patterns visible in the truth, matching the timing 
of increases and decreases of the true discharge, even in cases where the remaining bias in the discharge 
estimated by the algorithms is high, such as Figure 6d.

The normalized root mean square errors and the Nash-Sutcliffe efficiency for each of the 31 cases are shown 
in Figure 7, allowing a comparison of the performance for each case for the five algorithms. The two error 
metrics alongside the normalized biases, the normalized standard deviation of residuals and the correlation 
coefficient for the McFLI and data assimilation algorithms and for MOMMA are summarized in Figure 8. 
For completeness, we include a similar figure showing the Kling-Gupta Efficiency and its three elements in 
the supporting information, in Figure S5.

HiVDI and MetroMan show similar performance across most error metrics, a factor that may be related to 
the fact that both calculate discharge with a flow law that allows the effective friction coefficient to vary in 
space and in time (Equations 5 and 3, respectively). In contrast, the version of BAM benchmarked here as-
sumes that all reaches have the same friction coefficient and that this coefficient is static in time. While me-
dian values of some error metrics for BAM, HiVDI, and MetroMan are comparable, the interquartile ranges 
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for BAM are often considerably wider than those for HiVDI and MetroMan. SAD error metrics for Phase 1 
are somewhat better than BAM, and somewhat worse than HiVDI and MetroMan. MOMMA performance 
is significantly worse than other algorithms when judged on most metrics. Indeed, MOMMA significantly 
increased median normalized absolute bias (0.67) compared with the median bias of the WBM prior (0.44), 
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Figure 6.  Examples of retrieved hydrographs. The line colors indicate the discharge estimated by four Mass conserved Flow Law Inversion and data 
assimilation algorithms alongside the algorithm ensemble median, the initial estimate of mean annual flow (prior), and the truth. MetroMan, Hierarchical 
Variational Discharge Inference, and the median are nearly overlapping in panel e.
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while BAM (0.43), HiVDI (0.42), and MetroMan (0.34) reduced the median bias and SAD caused a slight 
increase (0.47).

MOMMA relies on two key parameters that are derived from the observational width and stage data. These 
are the water surface elevation of zero flow (B used in both Equations 9 and 10) and the bankfull water 
surface elevation (Hb, also in Equations 9 and 10). The initial value of B is estimated using the intercept 
from a linear model with the dependent variable stage and independent variable width squared (due to the 
assumption that the channel has a parabolic shape) derived from all stage and width observations equal to 
or less than the median observed stage. The value of Hb is determined by an automated routine that finds 
the point in the stage-width curve where the width-to-depth ratio is at its minimum. If no bankfull stage is 
identified, which is the case in many of the river reaches, no discharge values are estimated. Because of this 
limitation, fewer river reaches were assessed with MOMMA than the other algorithms. If a bankfull stage is 
identified, the bottom of the channel is recomputed as described above using all observed width and stage 
data below the bankfull stage rather than below the median stage. Because Hb and B are both dependent on 
the width-stage relation, the linearity of that relation is critical to the success of MOMMA. Any nonlinearity 
in that relation at a given river reach is a source of error in MOMMA discharge estimates.

An additional source of error for MOMMA comes from the estimation of the friction coefficient parameter 
(nb) (used in Equation 10). For this study, nb is assumed to be the Manning n value at the bankfull discharge. 
One of the priors given for this study is an estimate of the mean annual discharge, but not the bankfull 
discharge. In lieu of this, the bankfull discharge is estimated from an empirical relation between mean 
annual discharge (Qwbm) and bankfull discharge by Dudley (2004) that indicates that the bankfull discharge 
is roughly three times the magnitude of the mean annual discharge for a set of rivers in Maine. Using the 
estimate of bankfull discharge, nb is calibrated to yield that bankfull discharge given the observed bankfull 
width, stage, and slope. As the empirical relation between mean annual flow and bankfull discharge was 
derived for a specific region in the northeastern United States, it is not expected to be true for other cli-
matic and hydrophysiographic regions around the globe. This is therefore a likely source of error with the 
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Figure 7.  Comparison of the discharge Normalized Root Mean Square Errors (NRMSE) and Nash-Sutcliffe Efficiency (NSE) for each of the 31 idealized cases 
(organized in rows) as estimated by each of the discharge algorithms (columns). Cases shown in white for the Modified Optimized Manning Method Algorithm 
algorithm are cases where bankfull flow was not successfully identified, leading to no output. The missing case for SAD is the Jamuna river, where SAD did not 
run successfully. NRMSE was capped at 1 and NSE at −1 to allow for better visualization of differences between model performance. Outliers can be seen in 
Figure 8.
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application of MOMMA to many of the rivers in this study indicating that the application of MOMMA to 
river systems in other settings would require the input of appropriate empirical relations.

These results point to the need for quality control on the width-stage relation and an independent method 
for estimating nb for the successful use of MOMMA, which led us to exclude it from further analysis in this 
study. We note, however, that MOMMA tracks flow dynamics as evidenced by a correlation between esti-
mated discharge and true discharge larger than 0.9 for more than 75% of the examined cases (Figure 8e). 
Moreover, MOMMA does not rely on enforcing mass conservation between neighboring reaches, thus does 
not require reaches to be simultaneously observed and is not affected by the presence of undetectable con-
fluences, allowing discharge to be estimated in situations where the other algorithms cannot be applied. 
As such, future iterations of the MOMMA algorithm may be useful for estimating discharge from SWOT.

4.1.2.  Impact of Flow Law

To investigate if flow law differences are driving discharge algorithm outcomes, we computed the discharge 
errors caused by the chosen form of the Manning-Strickler equation (see Section 3.3.1) and divided the 
cases into two classes: the 15 cases with the lowest errors and the 16 cases with the highest errors. Figure 9 
panels i, j, and k compare discharge NRMSE for low versus high flow law errors. For BAM, the median 
NRMSE increases from 0.32 to 0.72 which is considerably larger than the increase in the NRMSE due to the 
flow law itself, which shows a median of 0.04 in the 15 best cases and 0.22 in the 16 worst cases. The two 
algorithms that use a spatiotemporally variable friction parameterization showed more modest increases: 
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Figure 8.  Summary statistics for case-averaged discharge for the five algorithms over the 31 examined cases. Panel a: box plot of the discharge Nash-Sutcliffe 
Efficiency for each of the algorithms. Panel b: discharge root mean square error normalized by the true mean discharge. Panel c: estimated discharge biases 
normalized by the true mean annual flow. Panel d: residual standard deviation normalized by the true mean discharge. Panel e: correlation coefficient. The 
vertical axes in panels a, c, and d are cut to allow comparisons between Bayesian At-many-stations-hydraulic-geometry Manning, MetroMan, Hierarchical 
Variational Discharge Inference, and SWOT Assimilated Discharge. Panels showing the full range of vales can be found in the Figure S4.
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Figure 9.  Panels a–d show how biases in the prior estimate of mean annual discharge (QWBM) affect the remaining biases after running the inversion 
algorithms, panels e–h show the histogram of remaining normalized bias after running each inversion method superimposed on the prior normalized biases 
(gray), panels i–k show how the quality of the Manning parameterization fit impacts the normalized root mean square errors, panels l–o show boxplots of the 
difference in magnitude between prior and final normalized discharge biases, distinguishing cases containing high spatial variability of hydraulic properties 
from those containing low spatial variability. In panels l–o, positive numbers represent decreases in the magnitude of the bias. The histogram for BAM 
represents only the 16 best fit cases shown in panel i.
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for MetroMan, the median NRMSE increased from 0.36 to 0.58, whereas for HiVDI the median discharge 
NRMSE increased from 0.30 to 0.63, with the errors due to the spatiotemporally variable friction flow law 
itself taking median values of 0.02 for the 15 best cases and 0.08 for the 16 worst cases. This result suggests 
that the higher the errors caused by the parameterization of friction are, the harder it is for discharge algo-
rithm to retrieve optimal flow law parameters, thus causing non-linear increases in discharge errors. This 
finding has not been reported previously, and bolsters the need to evaluate the performance of classical 
flow laws when applied to natural rivers at scales that are compatible with remote sensing methods as well 
as to improve flow law formulation to better suit such scales as done by for example, Tuozzolo, Langhorst, 
et al. (2019) and Rodríguez et al. (2020).

4.1.3.  Impact of Bias in the Prior Estimate of Mean Annual Flow

Similarly to the SWOT algorithm discharge benchmarking study by Durand et al. (2016), we found that a 
considerable fraction of the observed discharge NRMSE is caused by biases. Contrasting Figures 8c and 8d, 
we see that bias is larger than error in flow variations: the median ratios between the magnitude of the 
normalized biases and the normalized residual standard deviation for BAM, MetroMan, HiVDI, and SAD 
were: 1.5, 1.8, 2.2, and 1.7, respectively. Therefore, we searched for the factors that control the biases in the 
discharge estimated by the algorithms.

Similarly to Tuozzolo, Lind, et al. (2019), we found that discharge algorithm biases are sensitive to biases 
in the prior discharge estimates, as shown in Figure 9 panels a–d, which relate prior (QWBM) normalized 
biases with normalized biases in discharge estimated by BAM, MetroMan, HiVDI, and SAD. The correlation 
between biases in QWBM and in discharge estimated by BAM, MetroMan, HiVDI, and SAD were 0.95, 0.95, 
0.98, 0.72, respectively, and the slopes of the fitted lines are 0.85, 0.73, 0.84, and 0.53, respectively. The high 
correlation between prior and posterior biases in three of the algorithms shows that one should expect the 
biases in SWOT discharge to be closely related to the prior biases, however, the regression slopes being less 
than one suggests that the McFLI and the data assimilation algorithms tend to reduce bias. Although this 
observation is based on regressions that contain influential points, they are corroborated by Figure 9 panels 
e–h, which superimpose histograms of the estimated biases by BAM, MetroMan, HiVDI, and SAD on the 
prior biases. The increased number of cases falling into the class centered around zero and the smaller 
range observed in all four histograms support the observation that the algorithms generally improve over 
the prior discharge. We next sought to identify factors that control whether discharge algorithms decrease 
prior biases.

4.1.4.  Effect of Hydraulic Spatial Variability

Following the framework described in Section 3.3.2, we classified cases into high and low spatial variability, 
based on a threshold of the 66th percentile (sensitivity to choice of this threshold is explored using receiver 
operating characteristic curves, described subsequently). We quantified the improvement in normalized 
bias as the difference between the absolute values of the normalized biases for the prior estimate of dis-
charge (Qwbm) and the normalized biases in the discharge estimated by each algorithm. Positive values of 
improvement denote cases where the algorithm improves bias. Error boxplots for high and low variability 
shown in Figure 9 panels l–o, for BAM, MetroMan, HiVDI, and SAD, respectively. The comparison shown 
in Figure 9 panel l for BAM only represents the 15 cases with the smaller NRMSE errors caused by the static 
friction parameterization in BAM. Figure 9 shows that bias generally improves in the cases with high spatial 
variability, especially for MetroMan and HiVDI: the p-value for two sample t test on whether the high var-
iability results have lower bias was 0.01 for MetroMan and 0.04 for HiVDI. Neither BAM nor SAD showed 
different performance at the 0.05 level (p = 0.07 and 0.79, respectively); while BAM could show significant 
differences if tested for additional cases, we hypothesize that other issues dominate performance for SAD.

We explored sensitivity to the choice of threshold for high versus low variability using receiver operating 
curves, described in Section 3.3.2. Figure 10a shows curves built for MetroMan, HiVDI, SAD and for BAM, 
the latter showing two curves, one for all the 31 cases and a second curve named “BAM filtered” considering 
only the 16 cases with the lowest level of flow law errors. The selection of an excessively stringent minimum 
variability threshold, for example, the 100th percentile, would fail to identify any cases as being highly var-
iable. Such threshold would yield a true positive rate of 0 and a false positive rate of 0. As the threshold is 
relaxed, more cases are flagged as highly variable, leading to an increase in the true positive rate (tpr) and 
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often an increase in the false positive rate (fpr) as well. Under ideal circumstances, the number of false 
positives would remain at 0 until the threshold is overly relaxed. The curve for an ideal predictor begins at 0 
tpr and 0 fpr, immediately rising to 1 tpr, 0 frp where it remains until the threshold is overly relaxed, when 
the curve moves toward 1 tpr, 1 fpr. For real curves, good predictors would stay above and as far from the 1:1 
line (in terms of Euclidian distance) as possible, while curves tracking the 1:1 line or falling below would be 
as good as uninformed guesses.

The optimal threshold depends on the balance between an application's tolerance for false positives and the 
need to detect as many true positives as possible. In our study, we selected the threshold that would place 
the most algorithms as far away from the 1:1 line as possible, which happens at the 66th percentile. The use 
of the ROC for the selection of the optimal threshold has the purpose of decreasing the subjectivity involved 
in using an arbitrary threshold, thus allowing us to better examine how spatial variability affects the inver-
sion process. Figures 10b–10d illustrate the process for two cases: Grant Line canal, a case that is identified 
as likely to reduce discharge biases (high spatial variability of hydraulic properties), and Section 4 of the 
Ohio River, which is classified as likely to increase discharge biases due to having reaches with low spatial 
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Figure 10.  Panel a: Receiver operating characteristic curves for the four algorithms considering the degree of spatial variability as a predictor of inversion 
success. Lowering the minimum variability threshold will predict a higher number of successes, thus increasing both the number of true positives and false 
positives. Predictors following the 1:1 line are not better than guesses, therefore the further the predictor is from the 1:1 line, the better is the predictor. BAM 
is represented by two curves, one including all 31 cases and a second curve that only includes models where the normalized root mean square error due to 
Manning's equation considering a constant n for the set of reaches is less than 0.08, that is, the median value. Panels b–e illustrate how the predictor works. 
Both cases have hydraulic variability below the selected variability threshold for cross-sectional area at low flow (panel b) and slope (panel c), however, the 
coefficient of variation of reach widths for the Grant Line canal is at the 84th percentile (panel d), thus this case is classified as likely to succeed. The Ohio 
section 4 case does not show high variability of any of the three parameters; thus, it is classified as likely to worsen biases. Panel e: Grant Line canal case shows 
reduction in biases after running three of the four algorithms (represented by the four blue circles) whereas the Ohio section 4 case shows increased biases for 
all four algorithms. The Grant Line canal hydrograph is shown in Figure 6 panel c and Ohio River section 4 hydrograph in Figure 6 panel f.
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variability of hydraulic properties. Figure 10b shows the ratio of the reach averaged cross-sectional area at 
low flow (Amin) and the domain averaged Amin for both cases. When the coefficient of variation for Amin is 
contrasted to the other cases, we see that Grant Line canal ranks near the median for that criterion, while 
Ohio section 4 is at the 19th percentile. Therefore, both cases fail to reach the threshold for high variability 
in terms of cross-sectional area. The same happens for reach slope, however, when this exercise is repeated 
for width, we see that the coefficient of variation of width for the Grant Line canal is above the 84th per-
centile. Therefore, this case is classified as having high spatial variability of at least one of the criteria and 
is likely to decrease biases. Since section 4 of the Ohio River fails all three criteria, it is classified as likely to 
worsen discharge biases. This is illustrated in Figure 10e, where Grant Line canal shows smaller normalized 
posterior biases than those computed with the prior estimates of discharge for three of the algorithms, the 
exception being BAM, which increased the discharge bias from 0.15 to 0.22, whereas the Ohio section 4 
shows larger posterior biases for all four algorithms.

A possible interpretation for the opposite behavior observed in the two curves made for BAM, one with and 
one without filtering the cases where the flow law had provided worse fits to the data, is that the spatial 
variability of the hydraulic properties provides the information used by the inversion algorithms to find the 
flow law parameters, while errors in the flow law add confounding effects that can overwhelm the amount 
of available information. This interpretation is also supported by the difference in NRMSE between the 
best and worst flow law fit groups shown in Figure 9i. The filtering was neither necessary nor beneficial to 
HiVDI and MetroMan, likely because the level of error associated with the version of the Manning-Strickler 
flow law modified to incorporate depth dependency (see Equations 3 and 5) was not sufficient to obscure 
the signal present in the spatial variability of hydraulic properties.

While a predictor that simultaneously considers the spatial variability of the cross-sectional area at low 
flow, the water surface slope, and width provides a more complete picture than a predictor that only con-
siders one of the three properties, the need to know the cross-sectional area precludes the use of our frame-
work in large scales, as information on channel bathymetry is often unavailable. Future work should also 
search for quantitative relationships between hydraulic variability and the magnitude of bias improvement 
or worsening, which would allow the prediction of posterior biases in discharge, as such biases constitute a 
large fraction of overall discharge errors and their knowledge is essential to fulfilling the goal of improving 
the current state of knowledge of global runoff. The development of quantitative relationships between 
hydraulic variability and bias improvement over prior estimates requires a specific experimental protocol 
featuring several synthetic cases covering a large range in the degree of hydraulic variability, far beyond the 
31 cases used in our study. Ultimately, our predictor is useful for diagnosing inversions and for bringing 
insight into the factors that lead to inversion success, with an important potential use for the identification 
of optimal reach definition strategies to maximize the chance of inversion success.

4.2.  Phase 2: Gradual Degradation in Sampling Frequency Without Measurement Uncertainty

This phase allowed us to examine the robustness of the algorithms to decreasing time sampling without the 
confounding effect of measurement uncertainty. Figure 11 shows the different error metrics organized in 
rows with one column for each algorithm. For the Kling-Gupta Efficiency and its three associated elements 
see Figure S7 in the supplemental information. BAM had the most consistent performance of all algorithms 
at all sampling frequencies, showing no degradation as data became sparser in time. Despite the apparent 
increase in NSE, and decrease in normalized biases and NRMSE, one-way analysis of variance (ANOVA) 
test across the different time sampling settings for the error metrics failed to show any significant differenc-
es, with p-values of 0.37, 0.94, 0.98 for NSE, NRMSE, and normalized biases, respectively. The robustness 
to sampling frequency could be due to the way BAM simplifies the continuity equation, ignoring the time 
derivative of the cross-sectional area, leading to the assumption that at a given point in time, discharge is 
identical in all reaches.

HiVDI and MetroMan keep the time derivative term of the continuity equation, approximating it as the 
difference in cross-sectional area between two consecutive passes divided by the time interval between the 
passes. This assumption introduces a dependency on sampling frequency and could explain the modest 
decrease in NSE and increase in normalized bias for MetroMan when the revisit period is longer than 
7 days. Visual inspection suggests a degradation in performance was more pronounced for HiVDI, with 
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Figure 11.  Effect of time sampling on inversion metrics. Each column represents an inversion algorithm and the rows represent the different metrics. First 
row: Nash-Sutcliff Efficiency, second row: normalized root mean square errors, third row: absolute value of the normalized bias, fourth row: normalized 
standard deviation of residuals, and fifth row: correlation.
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error metrics worsening for revisit periods equal to or longer than 3 days. Based on one-way ANOVA tests 
performed across the different sampling frequencies, we observed that the changes in NSE and NRMSE 
were both statistically significant at the 0.05 level (p-values of 0.009 for both NSE and NRMSE). Howev-
er similar tests were inconclusive for normalized biases and residual standard deviation and correlation, 
which resulted in p-values of 0.52, 0.14, 0.70, respectively. For SAD, the only metric that showed statistically 
significant changes at the 0.05 level was correlation (p-value of 0.02), the remaining metrics had p-values in 
excess of 0.3. As for MetroMan, none of the metrics showed statistically significant changes, with the lowest 
p-values corresponding to the NRMSE metric (0.31). We conclude that for two out of the four examined al-
gorithms, temporal sampling does not play a major role in algorithm accuracy, with a third algorithm (SAD) 
only showing obvious degradation at the sparsest time sampling.

4.3.  Phase 3: Increasing Measurement Error

Figure 12 summarizes the sensitivity of the error metrics for the four algorithms to four levels of observa-
tional error: no error, half the expected SWOT errors, the full amount of SWOT errors, and 1.5 times the 
expected SWOT errors, for the 16 cases identified in Table 2. The Kling-Gupta Efficiency and its three asso-
ciated elements are included in Figure S8 in the supplemental information.

Measurement uncertainty can affect discharge estimation in two ways: (a) it will corrupt observations of 
reach properties, decreasing the amount of information available to the discharge algorithms and affecting 
their ability to retrieve flow law parameters and (b) it propagates directly through the chosen flow law into 
the estimated discharge. Both effects are visible for the SAD algorithm (fourth column in Figure 12), with 
increasing normalized biases (third row) and increasing normalized residual standard deviation (fourth 
row) with increasing observational uncertainty. Increasing magnitudes of bias and random errors lead to 
degrading NSE and increasing NRMSE (first and second rows respectively).

In terms of NSE, NRMSE, normalized biases, and residual standard deviations, BAM, MetroMan and HiV-
DI show little change in either median values or interquartile range with increasing measurement errors. 
BAM and MetroMan show a small degradation in the correlation between estimated discharges and true 
discharges, however, one-way ANOVA tests performed across the error metrics yield p-values larger than 
0.3 for all error metrics for both algorithms. HiVDI shows slight degradation of NSE and NRMSE with the 
inclusion of observational uncertainties. These were mostly caused by increases in the normalized residual 
standard deviation, as the magnitude of normalized biases remained largely unchanged.

4.4.  Future and Ongoing Work

It is important to remember that discharge error metrics and sensitivities presented in this study are a 
worst-case scenario benchmark, because the amount of prior information provided to each algorithm was 
limited. Thus, the performance of SAD and BAM may have been affected by the limited amount of ancillary 
information given to the algorithms. Because BAM expects the specification of different flow quantiles oth-
er than the mean, which were not available in this study, we had to make severely restrictive assumptions 
to compensate, for example, setting a coefficient of variation of 1 for the prior distribution of discharge for 
BAM. For SAD, the absence of information on geomorphology forced us to use a less informative prior for 
the shape parameter. Our experiment was designed to reflect the worst-case scenario for the algorithms 
when they operate at an extremely sparse landscape of prior information (just giving mean annual flow). 
Because HiVDI and BAM operate better when information on the expected dynamic range of discharge is 
available, we are working on extracting more flow quantiles from the WBMSed simulations. In operational 
settings, more prior information may be available and we expect that the lessons learned from this exercise 
will be put into practice to improve algorithms in the future.

Additionally, our experimental protocol required a strict version control: we did not rerun our algorithms 
to improve upon the results here even when algorithm improvements were suggested by poor results (e.g., 
in the case of the MOMMA algorithm results shown in Section 4.1.1). Thus, this analysis represents a snap-
shot in time of the evolution of SWOT discharge algorithms. Inspired by the results of this study, the BAM 
algorithm is undergoing improvements, including a new parameterization of the friction coefficient that 
allows it to vary in both space and time and the incorporation of geomorphological information as prior 
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Figure 12.  Effect of the Surface Water and Ocean Topography (SWOT) measurement error on inversion metrics. Each column represents an inversion 
algorithm and the rows represent the different metrics. First row: Nash-Sutcliff Efficiency, second row: normalized root mean square errors, third row: absolute 
value of the normalized bias, fourth row: normalized standard deviation of residuals, and fifth row: correlation.



Water Resources Research

information. Furthermore, other promising techniques such as machine learning, able to take advantage 
of a wider variety of measurements, including more extensive use of in situ observations, may be applied 
during or after the end of the SWOT mission by members of the community. However, due to time and 
computational constrains, such methods are not expected to be included in the early versions of the SWOT 
discharge product.

Synthetic studies such as Bonnema et al. (2016), Durand et al. (2016), as well as the present study require 
detailed hydraulic models to be executed. Despite the insightful results that are only possible in the presence 
of hydraulic river models, the extensive data requirements limit the number of test cases that can be realis-
tically evaluated. SWOT observations of calibration sites with collocated in situ gages to be collected during 
the calibration and validation phase of the mission will be of utmost importance to increase the number of 
rivers where discharge inversion algorithms can be evaluated, thus producing a more complete picture of 
the SWOT discharge performance.

Furthermore, future work should also strive to evaluate discharge uncertainty estimates, as such knowledge 
is essential for the proper assimilation of SWOT discharge into hydrological and land surface models. Exam-
ples of assimilation of discharge estimated with data collected by altimeters can be found in the literature, 
for example, Emery et al. (2018) who assimilated ENVISAT-derived discharge into the ISBA-CTRIP land 
surface model (Decharme et al., 2019) through the use of ensemble Kalman filter. Despite discharge not 
being directly measured by ENVISAT, Emery and coauthors found assimilation of the ENVISAT discharge 
to be effective in reducing the overall discharge errors across the Amazon Basin. More recently, Wongchu-
ig-Correa et al. (2020) evaluated the assimilation of synthetic SWOT observations of water surface elevation, 
width, and the estimated discharge into a continental scale hydrologic model which explicitly represents 
hydrodynamic routing through a basin. Wongchuig-Correa and coauthors not only observed that the assim-
ilation of SWOT discharge was beneficial, but also that the assimilation of discharge, water surface eleva-
tion, and width together yielded better improvements than assimilating just water surface elevation, width 
or discharge alone. Such findings suggest that SWOT discharge products have potential for improving the 
modeling and prediction of continental scale runoff, particularly when assimilated into models that do not 
explicitly account for hydrodynamic routing, which precludes the assimilation of direct SWOT observations 
such as inundation extent and water surface elevations.

5.  Conclusion
We have made important progress in understanding the underlying controls on SWOT discharge algorithm 
accuracy and have tested algorithms with realistic temporal sampling and observation error in a context 
mimicking algorithm deployment in ungaged basins. Knowledge of the factors that control algorithm accu-
racy guide further algorithm development and enable the global estimation of SWOT discharge uncertainty. 
Our results reveal that accuracy of the prior estimates of mean annual flow, flow law adequacy, and hy-
draulic variability are more important to the final discharge accuracy than either revisit time or observation 
error. This is encouraging as further studies are likely to identify improvements to flow laws, better and 
more complete sources of prior information, and the optimal selection of mass-conserved sets of reaches.

Consistent with previous studies, we show that discharge algorithms are better at tracking temporal varia-
tions in discharge than they are at estimating absolute discharge. Under ideal conditions, the ability to track 
flow dynamics described by the median normalized standard deviation of residuals computed across the 31 
cases was benchmarked at between 0.19 (HiVDI) and 0.29 (SAD) in this study, excluding the MOMMA algo-
rithm, whereas median absolute normalized biases varied from 0.34 (MetroMan) to 0.47 (SAD). Such results 
suggest that the current generation of algorithms designed for the SWOT mission will be invaluable for 
the characterization of discharge dynamics particularly in ungaged basins. However, the ability to provide 
accurate representation of climatology, in terms of mean discharge and the amplitude of its variation, will 
depend on the quality of the prior estimate of mean annual flow or the presence of ancillary information 
and its quality. Indeed, because only prior information on mean annual flow was provided to algorithms in 
this study, and because algorithms are evolving to use more prior information, the results presented in this 
study are essentially a worst-case benchmark.
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Although we found discharge algorithm biases to be dependent on biases present in the prior estimate of 
mean annual flow, the algorithms consistently, even if moderately, improved upon prior biases. Algorithm 
performance was found to further depend on both the accuracy of the flow law parameterization used in 
each algorithm, and on hydraulic variability, that is, mass-conserved sets of reaches that contain higher 
spatial variability of slope, width, and cross-section area help inversions, whereas flow law errors hinder 
inversions.

In contrast, our experiments showed little sensitivity to measurement error or temporal revisit time in the 
discharge algorithm results. Nevertheless, the interaction of sparse temporal sampling with high observa-
tion errors could lead to unexpected poor algorithm performance, particularly in cases where the temporal 
sampling is not sufficient to resolve variations in flow conditions reflected in the observed heights, widths, 
and slopes, which is needed by the inversion algorithms. This unfavorable condition could be exacerbated 
by the measurement error associated with the SWOT observations by preventing us from resolving the tem-
poral variations that remain in the sparsely sampled observations. Further experimentation can identify the 
existence and the magnitude of such interactions. However, our results suggest that the quality of the prior 
estimates of mean annual flow, the maximization of hydraulic variability in the inversion domain, and the 
accuracy of the flow law when applied to remote sensing-relevant scales are likely to be more important 
determinants of inversion performance.

This study has four important implications. First the optimal strategy for reach definition should strive to 
maximize hydraulic variability between reaches, since such variability improves the ability to estimate river 
discharge using McFLI and assimilation algorithms. Second, future work should explore retrieval studies 
in controlled contexts in order to better understand the inversion problem itself with the purpose of devel-
oping quantitative relationships between measurable reach properties and bias reduction. Third, given the 
importance of the prior estimates of mean annual flow, this study highlights the need to identify the best 
possible sources of prior information, which should preferably contain smaller biases and include all the el-
ements needed by the discharge inversion algorithms. Lastly, our results pave the way to build the capability 
to predict SWOT discharge algorithm performance, and thus map expected algorithm performance globally.

Data Availability Statement
The full datasets needed for the reproduction of the work can be freely downloaded from https://zenodo.
org/record/3817817 under a creative commons attribution 4.0 license.
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