106 research outputs found
Resuscitation and quantification of stressed Escherichia coli K12 NCTC8797 in water samples
The aim of this study was to investigate the impact on numbers of using different media for the enumeration of Escherichia coli subjected to stress, and to evaluate the use of different resuscitation methods on bacterial numbers. E. coli was subjected to heat stress by exposure to 55 °C for 1 h or to light-induced oxidative stress by exposure to artificial light for up to 8 h in the presence of methylene blue. In both cases, the bacterial counts on selective media were below the limits of detection whereas on non-selective media colonies were still produced. After resuscitation in non-selective media, using a multi-well MPN resuscitation method or resuscitation on membrane filters, the bacterial counts on selective media matched those on non-selective media. Heat and light stress can affect the ability of E. coli to grow on selective media essential for the enumeration as indicator bacteria. A resuscitation method is essential for the recovery of these stressed bacteria in order to avoid underestimation of indicator bacteria numbers in water. There was no difference in resuscitation efficiency using the membrane filter and multi-well MPN methods. This study emphasises the need to use a resuscitation method if the numbers of indicator bacteria in water samples are not to be underestimated. False-negative results in the analysis of drinking water or natural bathing waters could have profound health effects
MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context
To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein–DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein–DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling
A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function
DNA topoisomerases manage chromosome supercoiling and organization in all forms of life. Gyrase, a prokaryotic heterotetrameric type IIA topo, introduces negative supercoils into DNA by an ATP-dependent strand passage mechanism. All gyrase orthologs rely on a homologous set of catalytic domains for function; however, these enzymes also can possess species-specific auxiliary regions. The gyrases of many gram-negative bacteria harbor a 170-amino acid insertion of unknown architecture and function in the metal- and DNA-binding TOPRIM domain of the GyrB subunit. We have determined the structure of the 212 kDa Escherichia coli gyrase DNA binding and cleavage core containing this insert to 3.1 Å resolution. We find that the insert adopts a novel, extended fold that braces the GyrB TOPRIM domain against the coiled-coil arms of its partner GyrA subunit. Structure-guided deletion of the insert greatly reduces the DNA binding, supercoiling and DNA-stimulated ATPase activities of gyrase. Mutation of a single amino acid at the contact point between the insert and GyrA more modestly impairs supercoiling and ATP turnover, and does not affect DNA binding. Our data indicate that the insert has two functions, acting as a steric buttress to pre-configure the primary DNA-binding site, and serving as a relay that may help coordinate communication between different functional domains
The role of AtMUS81 in DNA repair and its genetic interaction with the helicase AtRecQ4A
The endonuclease MUS81 has been shown in a variety of organisms to be involved in DNA repair in mitotic and meiotic cells. Homologues of the MUS81 gene exist in the genomes of all eukaryotes, pointing to a conserved role of the protein. However, the biological role of MUS81 varies between different eukaryotes. For example, while loss of the gene results in strongly impaired fertility in Saccharomyces cerevisiae and nearly complete sterility in Schizosaccharomyces pombe, it is not essential for meiosis in mammals. We identified a functional homologue (AtMUS81/At4g30870) in the genome of Arabidopsis thaliana and isolated a full-length cDNA of this gene. Analysing two independent T-DNA insertion lines of AtMUS81, we found that they are sensitive to the mutagens MMS and MMC. Both mutants have a deficiency in homologous recombination in somatic cells but only after induction by genotoxic stress. In contrast to yeast, no meiotic defect of AtMUS81 mutants was detectable and the mutants are viable. Crosses with a hyperrecombinogenic mutant of the AtRecQ4A helicase resulted in synthetic lethality in the double mutant. Thus, the nuclease AtMUS81 and the helicase AtRecQ4A seem to be involved in two alternative pathways of resolution of replicative DNA structures in somatic cells
Evidence That a RecQ Helicase Slows Senescence by Resolving Recombining Telomeres
RecQ helicases, including Saccharomyces cerevisiae Sgs1p and the human Werner syndrome protein, are important for telomere maintenance in cells lacking telomerase activity. How maintenance is accomplished is only partly understood, although there is evidence that RecQ helicases function in telomere replication and recombination. Here we use two-dimensional gel electrophoresis (2DGE) and telomere sequence analysis to explore why cells lacking telomerase and Sgs1p (tlc1 sgs1 mutants) senesce more rapidly than tlc1 mutants with functional Sgs1p. We find that apparent X-shaped structures accumulate at telomeres in senescing tlc1 sgs1 mutants in a RAD52- and RAD53-dependent fashion. The X-structures are neither Holliday junctions nor convergent replication forks, but instead may be recombination intermediates related to hemicatenanes. Direct sequencing of examples of telomere I-L in senescing cells reveals a reduced recombination frequency in tlc1 sgs1 compared with tlc1 mutants, indicating that Sgs1p is needed for tlc1 mutants to complete telomere recombination. The reduction in recombinants is most prominent at longer telomeres, consistent with a requirement for Sgs1p to generate viable progeny following telomere recombination. We therefore suggest that Sgs1p may be required for efficient resolution of telomere recombination intermediates, and that resolution failure contributes to the premature senescence of tlc1 sgs1 mutants
Formation of Complex and Unstable Chromosomal Translocations in Yeast
Genome instability, associated with chromosome breakage syndromes and most human
cancers, is still poorly understood. In the yeast Saccharomyces
cerevisiae, numerous genes with roles in the preservation of genome
integrity have been identified. DNA-damage-checkpoint-deficient yeast cells that
lack Sgs1, a RecQ-like DNA helicase related to the human
Bloom's-syndrome-associated helicase BLM, show an increased rate of
genome instability, and we have previously shown that they accumulate recurring
chromosomal translocations between three similar genes, CAN1,
LYP1 and ALP1. Here, the chromosomal
location, copy number and sequence similarity of the translocation targets
ALP1 and LYP1 were altered to gain insight
into the formation of complex translocations. Among 844 clones with chromosomal
rearrangements, 93 with various types of simple and complex translocations
involving CAN1, LYP1 and ALP1
were identified. Breakpoint sequencing and mapping showed that the formation of
complex translocation types is strictly dependent on the location of the
initiating DNA break and revealed that complex translocations arise via a
combination of interchromosomal translocation and template-switching, as well as
from unstable dicentric intermediates. Template-switching occurred between
sequences on the same chromosome, but was inhibited if the genes were
transferred to different chromosomes. Unstable dicentric translocations
continuously gave rise to clones with multiple translocations in various
combinations, reminiscent of intratumor heterogeneity in human cancers. Base
substitutions and evidence of DNA slippage near rearrangement breakpoints
revealed that translocation formation can be accompanied by point mutations, and
their presence in different translocation types within the same clone provides
evidence that some of the different translocation types are derived from each
other rather than being formed de novo. These findings provide
insight into eukaryotic genome instability, especially the formation of
translocations and the sources of intraclonal heterogeneity, both of which are
often associated with human cancers
Nucleolin Inhibits G4 Oligonucleotide Unwinding by Werner Helicase
The Werner protein (WRNp), a member of the RecQ helicase family, is strongly associated with the nucleolus, as is nucleolin (NCL), an important nucleolar constituent protein. Both WRNp and NCL respond to the effects of DNA damaging agents. Therefore, we have investigated if these nuclear proteins interact and if this interaction has a possible functional significance in DNA damage repair.Here we report that WRNp interacts with the RNA-binding protein, NCL, based on immunoprecipitation, immunofluorescent co-localization in live and fixed cells, and direct binding of purified WRNp to nucleolin. We also map the binding region to the C-terminal domains of both proteins. Furthermore, treatment of U2OS cells with 15 µM of the Topoisomerase I inhibitor, camptothecin, causes the dissociation of the nucleolin-Werner complex in the nucleolus, followed by partial re-association in the nucleoplasm. Other DNA damaging agents, such as hydroxyurea, Mitomycin C, and aphidicolin do not have these effects. Nucleolin or its C-terminal fragment affected the helicase, but not the exonuclease activity of WRNp, by inhibiting WRN unwinding of G4 tetraplex DNA structures, as seen in activity assays and electrophoretic mobility shift assays (EMSA).These data suggest that nucleolin may regulate G4 DNA unwinding by WRNp, possibly in response to certain DNA damaging agents. We postulate that the NCL-WRNp complex may contain an inactive form of WRNp, which is released from the nucleolus upon DNA damage. Then, when required, WRNp is released from inhibition and can participate in the DNA repair processes
RecQ helicases and topoisomerase III in cancer and aging
RecQ helicases have in recent years attracted increasing attention due to the important roles they play in maintaining genomic integrity, which is essential for the life of a cell and the survival of a species. Humans with mutations in RecQ homologues are cancer prone and suffer from premature aging. A great effort has therefore been made to understand the molecular mechanisms and the biological pathways, in which RecQ helicases are involved. It has become clear that these enzymes work in close concert with DNA topoisomerase III, and studies in both yeast and mammalian systems point to a role of the proteins in processes involving homologous recombination. In this review we discuss the genetic and biochemical evidence for possible functions of RecQ helicases and DNA topoisomerase III in multiple cellular processes such as DNA recombination, DNA replication, and cell cycle checkpoint control
- …