159 research outputs found

    Normal neonatal TREC and KREC levels in early onset juvenile idiopathic arthritis

    Get PDF
    Objective: Dysregulated central tolerance predisposes to autoimmune diseases. Reduced thymic output as well as compromised central B cell tolerance checkpoints have been proposed in the pathogenesis of juvenile idiopathic arthritis (JIA). The aim of this study was to investigate neonatal levels of T-cell receptor excision circles (TRECs) and kappa-deleting element excision circles (KRECs), as markers of T- and B-cell output at birth, in patients with early onset JIA. Methods: TRECs and KRECs were quantitated by multiplex qPCR from dried blood spots (DBS), collected 2–5 days after birth, in 156 children with early onset JIA and in 312 matched controls. Results: When analysed from neonatal dried blood spots, the median TREC level was 78 (IQR 55–113) in JIA cases and 88 (IQR 57–117) copies/well in controls. The median KREC level was 51 (IQR 35–69) and 53 (IQR 35–74) copies/well, in JIA cases and controls, respectively. Stratification by sex and age at disease onset did not reveal any difference in the levels of TRECs and KRECs. Conclusion: T- and B-cell output at birth, as measured by TREC and KREC levels in neonatal dried blood spots, does not differ in children with early onset JIA compared to controls

    Prion Protein Is a Key Determinant of Alcohol Sensitivity through the Modulation of N-Methyl-D-Aspartate Receptor (NMDAR) Activity

    Get PDF
    The prion protein (PrP) is absolutely required for the development of prion diseases; nevertheless, its physiological functions in the central nervous system remain elusive. Using a combination of behavioral, electrophysiological and biochemical approaches in transgenic mouse models, we provide strong evidence for a crucial role of PrP in alcohol sensitivity. Indeed, PrP knock out (PrP−/−) mice presented a greater sensitivity to the sedative effects of EtOH compared to wild-type (wt) control mice. Conversely, compared to wt mice, those over-expressing mouse, human or hamster PrP genes presented a relative insensitivity to ethanol-induced sedation. An acute tolerance (i.e. reversion) to ethanol inhibition of N-methyl-D-aspartate (NMDA) receptor-mediated excitatory post-synaptic potentials in hippocampal slices developed slower in PrP−/− mice than in wt mice. We show that PrP is required to induce acute tolerance to ethanol by activating a Src-protein tyrosine kinase-dependent intracellular signaling pathway. In an attempt to decipher the molecular mechanisms underlying PrP-dependent ethanol effect, we looked for changes in lipid raft features in hippocampus of ethanol-treated wt mice compared to PrP−/− mice. Ethanol induced rapid and transient changes of buoyancy of lipid raft-associated proteins in hippocampus of wt but not PrP−/− mice suggesting a possible mechanistic link for PrP-dependent signal transduction. Together, our results reveal a hitherto unknown physiological role of PrP on the regulation of NMDAR activity and highlight its crucial role in synaptic functions

    Comparative Coastal Risk Index (CCRI): A multidisciplinary risk index for Latin America and the Caribbean

    Get PDF
    As the world's population grows to a projected 11.2 billion by 2100, the number of people living in low-lying areas exposed to coastal hazards is projected to increase. Critical infrastructure and valuable assets continue to be placed in vulnerable areas, and in recent years, millions of people have been displaced by natural hazards. Impacts from coastal hazards depend on the number of people, value of assets, and presence of critical resources in harm's way. Risks related to natural hazards are determined by a complex interaction between physical hazards, the vulnerability of a society or social-ecological system and its exposure to such hazards. Moreover, these risks are amplified by challenging socioeconomic dynamics, including poorly planned urban development, income inequality, and poverty. This study employs a combination of machine learning clustering techniques (Self Organizing Maps and K-Means) and a spatial index, to assess coastal risks in Latin America and the Caribbean (LAC) on a comparative scale. The proposed method meets multiple objectives, including the identification of hotspots and key drivers of coastal risk, and the ability to process large-volume multidimensional and multivariate datasets, effectively reducing sixteen variables related to coastal hazards, geographic exposure, and socioeconomic vulnerability, into a single index. Our results demonstrate that in LAC, more than 500,000 people live in areas where coastal hazards, exposure (of people, assets and ecosystems) and poverty converge, creating the ideal conditions for a perfect storm. Hotspot locations of coastal risk, identified by the proposed Comparative Coastal Risk Index (CCRI), contain more than 300,00 people and include: El Oro, Ecuador; Sinaloa, Mexico; Usulutan, El Salvador; and Chiapas, Mexico. Our results provide important insights into potential adaptation alternatives that could reduce the impacts of future hazards. Effective adaptation options must not only focus on developing coastal defenses, but also on improving practices and policies related to urban development, agricultural land use, and conservation, as well as ameliorating socioeconomic conditions

    pKa Modulation of the Acid/Base Catalyst within GH32 and GH68: A Role in Substrate/Inhibitor Specificity?

    Get PDF
    Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst

    The Adhesion GPCR GPR125 is specifically expressed in the choroid plexus and is upregulated following brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GPR125 belongs to the family of <it>Adhesion </it>G protein-coupled receptors (GPCRs). A single copy of GPR125 was found in many vertebrate genomes. We also identified a <it>Drosophila </it>sequence, DmCG15744, which shares a common ancestor with the entire Group III of <it>Adhesio</it>n GPCRs, and also contains Ig, LRR and HBD domains which were observed in mammalian GPR125.</p> <p>Results</p> <p>We found specific expression of GPR125 in cells of the choroid plexus using <it>in situ </it>hybridization and protein-specific antibodies and combined <it>in situ</it>/immunohistochemistry co-localization using cytokeratin, a marker specific for epithelial cells. Induction of inflammation by LPS did not change GPR125 expression. However, GPR125 expression was transiently increased (almost 2-fold) at 4 h after traumatic brain injury (TBI) followed by a decrease (approximately 4-fold) from 2 days onwards in the choroid plexus as well as increased expression (2-fold) in the hippocampus that was delayed until 1 day after injury.</p> <p>Conclusion</p> <p>These findings suggest that GPR125 plays a functional role in choroidal and hippocampal response to injury.</p

    The impact of change in a doctor's job position: a five-year cohort study of job satisfaction among Norwegian doctors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Job satisfaction among physicians may be of importance to their individual careers and their work with patients. We lack prospective studies on whether a change in a doctor's job position influences their job satisfaction over a five-year period if we control for other workload factors.</p> <p>Methods</p> <p>A longitudinal national cohort of all physicians who graduated in Norway in 1993 and 1994 was surveyed by postal questionnaire in 2003 (T1) and 2008 (T2). Outcomes were measured with a 10-item job satisfaction scale. Predictor variables in a multiple regression model were: change in job position, reduction in work-home interface stress, reduction in work hours, age, and gender.</p> <p>Results</p> <p>A total of 59% of subjects (306/522) responded at both time points. The mean value of job satisfaction in the total sample increased from 51.6 (SD = 9.0) at T1 to 53.4 (SD = 8.2) at T2 (paired <it>t </it>test, <it>t </it>= 3.8, <it>p </it>< 0.001). The major groups or positions at T1 were senior house officers (45%), chief specialists in hospitals (23%), and general practitioners (17%), and the latter showed the highest levels of job satisfaction. Physicians who changed position during the period (n = 176) experienced an increase in job satisfaction from 49.5 (SD = 8.4) in 2003 to 52.9 (SD = 7.5) in 2008 (paired <it>t </it>test, <it>t </it>= 5.2, <it>p </it>< 0.001). Job satisfaction remained unchanged for physicians who stayed in the same position. There was also an increase in satisfaction among those who changed from positions other than senior house officer at T1 (<it>p </it>< 0.01). The significant adjusted predictor variables in the multiple regression model were the change in position from senior house officer at T1 to any other position (β = 2.83, <it>p </it>< 0.001), any change in job position (from any position except SHO at T1) (β = 4.18, <it>p </it>< 0.01) and reduction in work-home interface stress (β = 1.04, <it>p </it>< 0.001).</p> <p>Conclusions</p> <p>The physicians experienced an increase in job satisfaction over a five-year period, which was predicted by a change in job position and a reduction in work-home stress. This study has implications with respect to career advice for young doctors.</p
    • …
    corecore