26 research outputs found

    Characterization of the Viral Microbiome in Patients with Severe Lower Respiratory Tract Infections, Using Metagenomic Sequencing

    Get PDF
    The human respiratory tract is heavily exposed to microorganisms. Viral respiratory tract pathogens, like RSV, influenza and rhinoviruses cause major morbidity and mortality from respiratory tract disease. Furthermore, as viruses have limited means of transmission, viruses that cause pathogenicity in other tissues may be transmitted through the respiratory tract. It is therefore important to chart the human virome in this compartment. We have studied nasopharyngeal aspirate samples submitted to the Karolinska University Laboratory, Stockholm, Sweden from March 2004 to May 2005 for diagnosis of respiratory tract infections. We have used a metagenomic sequencing strategy to characterize viruses, as this provides the most unbiased view of the samples. Virus enrichment followed by 454 sequencing resulted in totally 703,790 reads and 110,931 of these were found to be of viral origin by using an automated classification pipeline. The snapshot of the respiratory tract virome of these 210 patients revealed 39 species and many more strains of viruses. Most of the viral sequences were classified into one of three major families; Paramyxoviridae, Picornaviridae or Orthomyxoviridae. The study also identified one novel type of Rhinovirus C, and identified a number of previously undescribed viral genetic fragments of unknown origin

    Potential predictive markers of chemotherapy resistance in stage III ovarian serous carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemotherapy resistance remains a major obstacle in the treatment of women with ovarian cancer. Establishing predictive markers of chemoresponse would help to individualize therapy and improve survival of ovarian cancer patients. Chemotherapy resistance in ovarian cancer has been studied thoroughly and several non-overlapping single genes, gene profiles and copy number alterations have been suggested as potential markers. The objective of this study was to explore genetic alterations behind chemotherapy resistance in ovarian cancer with the ultimate aim to find potential predictive markers.</p> <p>Methods</p> <p>To create the best opportunities for identifying genetic alterations of importance for resistance, we selected a homogenous tumor material concerning histology, stage and chemotherapy. Using high-resolution whole genome array comparative genomic hybridization (CGH), we analyzed the tumor genomes of 40 fresh-frozen stage III ovarian serous carcinomas, all uniformly treated with combination therapy paclitaxel/carboplatin. Fisher's exact test was used to identify significant differences. Subsequently, we examined four genes in the significant regions (<it>EVI1</it>, <it>MDS1</it>, <it>SH3GL2</it>, <it>SH3KBP1</it>) plus the <it>ABCB1 </it>gene with quantitative real-time polymerase chain reaction (QPCR) to evaluate the impact of DNA alterations on the transcriptional level.</p> <p>Results</p> <p>We identified gain in 3q26.2, and losses in 6q11.2-12, 9p22.3, 9p22.2-22.1, 9p22.1-21.3, Xp22.2-22.12, Xp22.11-11.3, and Xp11.23-11.1 to be significantly associated with chemotherapy resistance. In the gene expression analysis, <it>EVI1 </it>expression differed between samples with gain versus without gain, exhibiting higher expression in the gain group.</p> <p>Conclusion</p> <p>In conclusion, we detected specific genetic alterations associated with resistance, of which some might be potential predictive markers of chemotherapy resistance in advanced ovarian serous carcinomas. Thus, further studies are required to validate these findings in an independent ovarian tumor series.</p

    Environmental Levels of the Antiviral Oseltamivir Induce Development of Resistance Mutation H274Y in Influenza A/H1N1 Virus in Mallards

    Get PDF
    Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008–2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC50 for OC was increased from 2–4 nM in wild-type viruses to 400–700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58–293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals

    Disease Dynamics and Bird Migration—Linking Mallards Anas platyrhynchos and Subtype Diversity of the Influenza A Virus in Time and Space

    Get PDF
    The mallard Anas platyrhynchos is a reservoir species for influenza A virus in the northern hemisphere, with particularly high prevalence rates prior to as well as during its prolonged autumn migration. It has been proposed that the virus is brought from the breeding grounds and transmitted to conspecifics during subsequent staging during migration, and so a better understanding of the natal origin of staging ducks is vital to deciphering the dynamics of viral movement pathways. Ottenby is an important stopover site in southeast Sweden almost halfway downstream in the major Northwest European flyway, and is used by millions of waterfowl each year. Here, mallards were captured and sampled for influenza A virus infection, and positive samples were subtyped in order to study possible links to the natal area, which were determined by a novel approach combining banding recovery data and isotopic measurements (δ2H) of feathers grown on breeding grounds. Geographic assignments showed that the core natal areas of studied mallards were in Estonia, southern and central Finland, and northwestern Russia. This study demonstrates a clear temporal succession of latitudes of natal origin during the course of autumn migration. We also demonstrate a corresponding and concomitant shift in virus subtypes. Acknowledging that these two different patterns were based in part upon different data, a likely interpretation worth further testing is that the early arriving birds with more proximate origins have different influenza A subtypes than the more distantly originating late autumn birds. If true, this knowledge would allow novel insight into the origins and transmission of the influenza A virus among migratory hosts previously unavailable through conventional approaches

    Air ambulance and hospital services for critically ill and injured in Greenland, Iceland and the Faroe Islands: how can we improve?

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.The Nordic Atlantic Cooperation (NORA) is an intergovernmental organization under the auspices of the Nordic Council of Ministers. The NORA region comprises Greenland, Iceland, Faroe Islands and western coastal areas of Norway. Historical, cultural and institutional links bind these nations together in multiple ways, and regional co-operation has in recent years become a focus of interest. This commentary addresses air medical services (AMSs) and available advanced hospital services in the 3 smallest NORA countries challenged sparse populations, hereafter referred to as the region. It seems likely that strengthened regional co-operation can help these countries to address common challenges within health care by exchanging know-how and best practices, pooling resources and improving the efficiency of care delivery. The 4 largest hospitals in the region, Dronning Ingrids Hospital in Nuuk (Greenland), Landspítali in Reykjavík and Sjúkrahúsið á Akureyri, (both in Iceland) and Landssjúkrahúsið Tórshavn on the Faroe Islands, have therefore undertaken the project Network for patient transport in the North-West Atlantic (in Danish: Netværk for patienttransport i Vest-Norden). The goal of the project, and of this article, is to exchange information and provide an overview of current AMSs and access to acute hospital care for severely ill or injured patients in the 3 participating countries. Of equal importance is the intention to highlight the need for increased regional co-operation to optimize use of limited resources in the provision of health care services

    Wally and the Major [picture] : joy-ride /

    No full text
    Part of the Stan Cross Archive of cartoons and drawings, 1912-1974.; Inscription: "Stan Cross 2/57"--In ink, lower right. "6742 Thur Mar 8"--In ink, right margin; "6742"--In pencil, upper right corner; "Joy-Ride"--In pencil, upper margin.; Also available in an electronic version via the internet at: http://nla.gov.au/nla.pic-vn4303561
    corecore