221 research outputs found

    Upregulation of brain renin angiotensin system by 27-hydroxycholesterol in Alzheimer's disease

    Get PDF
    In spite of the fact that cholesterol does not pass the blood-brain barrier, hypercholesterolemia has been linked to increase Alzheimer's disease (AD) risk. Hypertension is another risk factor and angiotensin converting enzyme (ACE) activity is known to be increased in AD. Furthermore, a lower incidence of AD has been reported in patients taking anti-hypertensive drugs. Here we show that the levels of angiotensinogen (AGT) and ACE are increased in the cerebrospinal fluid (CSF) of patients with mild cognitive impairment and AD. Moreover, we show ACE activity in the CSF to be positively correlated with both plasma and CSF levels of 27-hydroxycholesterol (27-OH), an oxysterol known to pass through the BBB and taken up from the circulation by the brain. In addition, treatment of rat primary neurons, astrocytes, and human neuroblastoma cells with 27-OH resulted in increased production of AGT. Our results demonstrate that upregulation of renin-angiotensin system (RAS) in AD brains occurs not only at the enzymatic level (ACE) but also at the substrate level (AGT). The possibility that 27-OH is part of a mechanism linking hypercholesterolemia with increased brain RAS activity and increased AD risk is discussed

    Hypercholesterolemia and 27-Hydroxycholesterol Increase S100A8 and RAGE Expression in the Brain: a Link Between Cholesterol, Alarmins, and Neurodegeneration

    Get PDF
    Alterations in cholesterol metabolism in the brain have a major role in the physiology of Alzheimer’s disease (AD). Oxysterols are cholesterol metabolites with multiple implications in memory functions and in neurodegeneration. Previous studies have shown detrimental effects of cholesterol metabolites in neurons, but its effect in glial cells is unknown. We used a high-fat/high-cholesterol diet in mice to study the effects of hypercholesterolemia over the alarmin S100A8 cascade in the hippocampus. Using CYP27Tg, a transgenic mouse model, we show that the hypercholesterolemia influence on the brain is mediated by the excess of 27-hydroxycholesterol (27-OH), a cholesterol metabolite. We also employed an acute model of 27-OH intraventricular injection in the brain to study RAGE and S100A8 response. We used primary cultures of neurons and astrocytes to study the effect of high levels of 27-OH over the S100A8 alarmin cascade. We report that a high-fat/high-cholesterol diet leads to an increase in S100A8 production in the brain. In CYP27Tg, we report an increase of S100A8 and its receptor RAGE in the hippocampus under elevated 27-OH in the brain. Using siRNA, we found that 27-OH upregulation of RAGE in astrocytes and neurons is mediated by the nuclear receptor RXRγ. Silencing RXRγ in neurons prevented 27-OH-mediated upregulation of RAGE. These results show that S100A8 alarmin and RAGE respond to high levels of 27-OH in the brain in both neurons and astrocytes through RXRγ. Our study supports the notion that 27-OH mediates detrimental effects of hypercholesterolemia to the brain via alarmin signaling.Open access funding provided by Karolinska Institute. This research was supported by the following Swedish foundations: Swedish Brain Power, the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, Strategic Neuroscience Program, Margaretha af Ugglas Foundation, Gun och Bertil Stohnes Stiftelse, Karolinska Institutet fund for geriatric research, Stiftelsen Gamla Tjänarinnor, Demensfonden,Lindhés Advokatbyrå, Hjärnfonden, and Alzheimerfonden. R. L.-V. was fnancially supported by Mexico’s National Council for Science and Technology (CONACYT) CVU, 209252, and by Olle Enqvist Foundation grant no. 2014/778. Ramon Areces Foundation, Spain, supported E. P., EMBO Long-Term Fellowship (ALTF 696–2013), the SSMF postdoctoral fellowship, and Juan de la Cierva-Incorporación. (IJCI-2016–27,658) supported P. M.-S

    Reduced Plasma Levels of 25-Hydroxycholesterol and Increased Cerebrospinal Fluid Levels of Bile Acid Precursors in Multiple Sclerosis Patients

    Get PDF
    Multiple sclerosis (MS) is an autoimmune, inflammatory disease of the central nervous system (CNS). We have measured the levels of over 20 non-esterified sterols in plasma and cerebrospinal fluid (CSF) from patients suffering from MS, inflammatory CNS disease, neurodegenerative disease and control patients. Analysis was performed following enzyme-assisted derivatisation by liquid chromatography-mass spectrometry (LC-MS) exploiting multistage fragmentation (MS n ). We found increased concentrations of bile acid precursors in CSF from each of the disease states and that patients with inflammatory CNS disease classified as suspected autoimmune disease or of unknown aetiology also showed elevated concentrations of 25-hydroxycholestertol (25-HC, P < 0.05) in CSF. Cholesterol concentrations in CSF were not changed except for patients diagnosed with amyotrophic lateral sclerosis (P < 0.01) or pathogen-based infections of the CNS (P < 0.05) where they were elevated. In plasma, we found that 25-HC (P < 0.01), (25R)26-hydroxycholesterol ((25R)26-HC, P < 0.05) and 7α-hydroxy-3-oxocholest-4-enoic acid (7αH,3O-CA, P < 0.05) were reduced in relapsing-remitting MS (RRMS) patients compared to controls. The pattern of reduced plasma levels of 25-HC, (25R)26-HC and 7αH,3O-CA was unique to RRMS. In summary, in plasma, we find that the concentration of 25-HC in RRMS patients is significantly lower than in controls. This is consistent with the hypothesis that a lower propensity of macrophages to synthesise 25-HC will result in reduced negative feedback by 25-HC on IL-1 family cytokine production and exacerbated MS. In CSF, we find that the dominating metabolites reflect the acidic pathway of bile acid biosynthesis and the elevated levels of these in CNS disease is likely to reflect cholesterol release as a result of demyelination or neuronal death. 25-HC is elevated in patients with inflammatory CNS disease probably as a consequence of up-regulation of the type 1 interferon-stimulated gene cholesterol 25-hydroxylase in macrophage

    Cholesterol and oxysterol sulfates:Pathophysiological roles and analytical challenges

    Get PDF
    Cholesterol and oxysterol sulfates are important regulators of lipid metabolism, inflammation, cell apoptosis, and cell survival. Among the sulfate-based lipids, cholesterol sulfate (CS) is the most studied lipid both quantitatively and functionally. Despite the importance, very few studies have analysed and linked the actions of oxysterol sulfates to their physiological and pathophysiological roles. Overexpression of sulfotransferases confirmed the formation of a range of oxysterol sulfates and their antagonistic effects on liver X receptors (LXRs) prompting further investigations how are the changes to oxysterol/oxysterol sulfate homeostasis can contribute to LXR activity in the physiological milieu. Here, we aim to bring together for novel roles of oxysterol sulfates, the available techniques and the challenges associated with their analysis. Understanding the oxysterol/oxysterol sulfate levels and their pathophysiological mechanisms could lead to new therapeutic targets for metabolic diseases

    Parents' experiences of an abnormal ultrasound examination - vacillating between emotional confusion and sense of reality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An ultrasound examination is an important confirmation of the pregnancy and is accepted without reflection to any prenatal diagnostic aspects. An abnormal finding often comes unexpectedly and is a shock for the parents. The aim was to generate a theoretical understanding of parents' experiences of the situation when their fetus is found to have an abnormality at a routine ultrasound examination.</p> <p>Methods</p> <p>Sixteen parents, mothers and fathers, whose fetus had been diagnosed with an abnormality during an ultrasound scan in the second or third trimester, were interviewed. The study employed a grounded theory approach.</p> <p>Results</p> <p>The core category <it>vacillating between the emotional confusion and sense of reality </it>is related to the main concern <it>assessment of the diagnosis impact on the well-being of the fetus</it>. Two other categories <it>Entering uncertainty </it>and <it>Involved in an ongoing change and adaptation </it>have each five sub-categories.</p> <p>Conclusions</p> <p>Parents are aware of that ultrasound examination is a tool for identifying abnormalities prenatally. The information about the abnormality initially results in broken expectations and anxiety. Parents become involved in ongoing change and adaptation. They need information about the ultrasound findings and the treatment without prolonged delay and in a suitable environment. The examiner who performs the ultrasound examination must be aware of how anxiety can be intensified by environmental factors. All parents should to be offered a professional person to give them <it>s</it>upport as a part of the routine management of this situation.</p

    Plasma 24S-hydroxycholesterol levels in elderly subjects with late onset Alzheimer's disease or vascular dementia: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In central nervous system cholesterol cannot be degraded but is secreted into circulation predominantly in the form of its polar metabolite 24(<it>S</it>)-hydroxycholesterol (24S-OH-Chol). Some studies suggested an association between 24S-OH-Chol metabolism and different neurological diseases including dementia. A possible decrease in 24S-OH-Chol plasma levels has been reported late onset Alzheimer's disease (LOAD) and vascular dementia (VD), but results of previous studies are partially contradictory.</p> <p>Methods</p> <p>By high-speed liquid chromatography/tandem mass spectrometry we evaluated the plasma levels of 24S-OH-Chol in a sample of 160 older individuals: 60 patients with LOAD, 35 patients with VD, 25 subjects affected by cognitive impairment no-dementia (CIND), and 40 (144 for genetics study) cognitively normal Controls. We also investigated the possible association between PPARgamma Pro12Ala polymorphism and dementia or 24S-OH-Chol levels.</p> <p>Results</p> <p>Compared with Controls, plasma 24S-OH-Chol levels were higher in LOAD and lower in VD; a slight not-significant increase in CIND was observed (ANOVA p: 0.001). A positive correlation between 24S-OH-Chol/TC ratio and plasma C reactive protein (CRP) levels was found in the whole sample, independent of possible confounders (multiple regression p: 0.04; r<sup>2</sup>: 0.10). This correlation was strong in LOAD (r: 0.39), still present in CIND (r: 0.20), but was absent in VD patients (r: 0.08). The PPARgamma Pro12Ala polymorphism was not associated with the diagnosis of LOAD, VD, or CIND; no correlation emerged between the Ala allele and 24S-OH-Chol plasma levels.</p> <p>Conclusions</p> <p>Our results suggest that plasma 24S-OH-Chol levels might be increased in the first stages of LOAD, and this phenomenon might be related with systemic inflammation. The finding of lower 24S-OH-Chol concentrations in VD might be related with a more advanced stage of VD compared with LOAD in our sample, and/or to different pathogenetic mechanisms and evolution of these two forms of dementia.</p

    Anti-Inflammatory Effect of Fluvastatin on IL-8 Production Induced by Pseudomonas aeruginosa and Aspergillus fumigatus Antigens in Cystic Fibrosis

    Get PDF
    International audienceBACKGROUND: Early in life, patients with cystic fibrosis (CF) are infected with microorganisms including bacteria and fungi, particularly Pseudomonas aeruginosa and Aspergillus fumigatus. Since recent research has identified the anti-inflammatory properties of statins (besides their lipid-lowering effects), we investigated the effect of fluvastatin on the production of the potent neutrophil chemoattractant chemokine, IL-8, in whole blood from CF patients, stimulated by Pseudomonas aeruginosa (LPS) and Aspergillus fumigatus (AFA) antigens. RESULTS: Whole blood from adult patients with CF and from healthy volunteers was collected at the Rennes University Hospital (France). Blood was pretreated for 1 h with fluvastatin (0-300 µM) and incubated for 24 h with LPS (10 µg/mL) and/or AFA (diluted 1/200). IL-8 protein levels, quantified by ELISA, were increased in a concentration-dependent manner when cells were stimulated by LPS or AFA. Fluvastatin strongly decreased the levels of IL-8, in a concentration-dependent manner, in whole blood from CF patients. However, its inhibitory effect was decreased or absent in whole blood from healthy subjects. Furthermore, the inhibition induced by fluvastatin in CF whole blood was reversed in the presence of intermediates within the cholesterol biosynthesis pathway, mevalonate, farnesyl pyprophosphate or geranylgeranyl pyrophosphate that activate small GTPases by isoprenylation. CONCLUSIONS: For the first time, the inhibitory effects of fluvastatin on CF systemic inflammation may reveal the important therapeutic potential of statins in pathological conditions associated with the over-production of pro-inflammatory cytokines and chemokines as observed during the manifestation of CF. The anti-inflammatory effect could be related to the modulation of the prenylation of signalling proteins

    The Cholesterol Metabolite 25-Hydroxycholesterol Activates Estrogen Receptor α-Mediated Signaling in Cancer Cells and in Cardiomyocytes

    Get PDF
    The hydroxylated derivatives of cholesterol, such as the oxysterols, play important roles in lipid metabolism. In particular, 25-hydroxycholesterol (25 HC) has been implicated in a variety of metabolic events including cholesterol homeostasis and atherosclerosis. 25 HC is detectable in human plasma after ingestion of a meal rich in oxysterols and following a dietary cholesterol challenge. In addition, the levels of oxysterols, including 25 HC, have been found to be elevated in hypercholesterolemic serum.Here, we demonstrate that the estrogen receptor (ER) α mediates gene expression changes and growth responses induced by 25 HC in breast and ovarian cancer cells. Moreover, 25 HC exhibits the ERα-dependent ability like 17 β-estradiol (E2) to inhibit the up-regulation of HIF-1α and connective tissue growth factor by hypoxic conditions in cardiomyocytes and rat heart preparations and to prevent the hypoxia-induced apoptosis.The estrogen action exerted by 25 HC may be considered as an additional factor involved in the progression of breast and ovarian tumors. Moreover, the estrogen-like activity of 25 HC elicited in the cardiovascular system may play a role against hypoxic environments
    corecore