9 research outputs found

    The Seascape of Demersal Fish Nursery Areas in the North Mediterranean Sea, a First Step Towards the Implementation of Spatial Planning for Trawl Fisheries

    Get PDF
    The identification of nursery grounds and other essential fish habitats of exploited stocks is a key requirement for the development of spatial conservation planning aimed at reducing the adverse impact of fishing on the exploited populations and ecosystems. The reduction in juvenile mortality is particularly relevant in the Mediterranean and is considered as one of the main prerequisites for the future sustainability of trawl fisheries. The distribution of nursery areas of 11 important commercial species of demersal fish and shellfish was analysed in the European Union Mediterranean waters using time series of bottom trawl survey data with the aim of identifying the most persistent recruitment areas. A high interspecific spatial overlap between nursery areas was mainly found along the shelf break of many different sectors of the Northern Mediterranean indicating a high potential for the implementation of conservation measures. Overlap of the nursery grounds with existing spatial fisheries management measures and trawl fisheries restricted areas was also investigated. Spatial analyses revealed considerable variation depending on species and associated habitat/depth preferences with increased protection seen in coastal nurseries and minimal protection seen for deeper nurseries (e.g. Parapenaeus longirostris 6%). This is partly attributed to existing environmental policy instruments (e.g. Habitats Directive and Mediterranean Regulation EC 1967/2006) aiming at minimising impacts on coastal priority habitats such as seagrass, coralligenous and maerl beds. The new knowledge on the distribution and persistence of demersal nurseries provided in this study can support the application of spatial conservation measures, such as the designation of no-take Marine Protected Areas in EU Mediterranean waters and their inclusion in a conservation network. The establishment of no-take zones will be consistent with the objectives of the Common Fisheries Policy applying the ecosystem approach to fisheries management and with the requirements of the Marine Strategy Framework Directive to maintain or achieve seafloor integrity and good environmental status.Versión del editor4,411

    Spatial distribution pattern of European hake Merluccius merluccius (Pisces: Merlucciidae) in the Mediterranean Sea

    Get PDF
    The present study provides updated information on the occurrence, abundance and biomass distribution patterns and length frequencies of Merluccius merluccius in the Mediterranean Sea, by analysing a time series of data from the Medi- terranean International Trawl Surveys (MEDITS) from 1994 to 2015. The highest values of abundance and biomass were observed in the Sardinian Seas. The use of a generalized additive model, in which standardized biomass indices (kg km–2) were analysed as a function of environmental variables, explained how ecological factors could affect the spatio-temporal distribution of European hake biomass in the basin. High biomass levels predicted by the model were observed especially at 200 m depth and between 14°C and 18°C, highlighting the preference of the species for colder waters. A strong reduction of biomass was observed since the year 2009, probably due to the strengthening of the seasonal thermocline that had greatly reduced the availability of food. The general decrease in biomass of several stocks of anchovy and sardine, preys of European hake, might be indirectly connected to the decreasing biomass detected in the present study. The length analysis shows me- dian values lower than 200 mm total length of most of the investigated areas

    Explorative analysis on Mullus barbatus ageing data variability in Mediterranean basin

    Get PDF
    The uncertainty in age estimation by otolith reading may be at the root of the large variability in red mullet (Mullus barbatus) growth models in the Mediterranean. In the MEDITS survey, red mullet age data are produced following the same sampling protocol and otolith reading methodology. However, ageing is assigned using different interpretation schemes, including variations in theoretical birthdate and number of false rings considered, in addition to differences in the experience level of readers. The present work analysed the influence of these variations and the geographical location of sampling on red mullet ageing using a multivariate approach (principal component analysis). Reader experience was the most important parameter correlated with the variability. The number of rings considered false showed a significant effect on the variability in the first age groups but had less influence on the older ones. The effect of the theoretical birthdate was low in all age groups. Geographical location had a significant influence, with longitude showing greater effects than latitude. In light of these results, workshops, exchanges and the adoption of a common ageing protocol based on age validation studies are considered fundamental tools for improving precision in red mullet ageing

    Large-scale distribution of deep-sea megafauna community along Mediterranean trawlable grounds

    No full text
    The large-scale distribution pattern of megafauna communities along the Mediterranean middle slope was explored. The study was conducted between 500 and 800 m depth where deep-water fishery occurs. Although community studies carried out deeper than 500 m are partly available for some geographic areas, few large-scale comparative studies have been carried out. Within the framework of the MEDITS survey programme, we compared the megafauna community structure in ten geographical sub-areas (GSAs) along the Mediterranean coasts. Additionally, the spatial distribution of fishing was analysed using vessel monitoring by satellite information. Overall, the community showed a significant difference between sub-areas, with a decreasing eastward pattern in abundance and biomass. Longitude was the main factor explaining variation among sub-areas (by generalized additive models). However, we found a region which did not follow the general pattern. GSA 6 (northern Spain) showed significantly lower abundance and a different composition structure to the adjacent areas. The decrease in community descriptors (i.e. abundance and biomass) in this area is probably a symptom of population changes induced by intense fishery exploitation. Overall, a combination of environmental variables and human-induced impacts appears to influence the bentho-pelagic communities along the slope areas of the Mediterranea

    Scientific, Technical and Economic Committee for Fisheries. Mediterranean Fisheries Assessments Part 2 (STECF-14-19)

    Get PDF
    The STECF expert working group "EWG 1419 - Mediterranean assessment part 2", has convened in Rome during 19-23 January 2015 and addressed a series of issues as requested by DG MARE in the correspomnding terms of references. The detailed output of this working group efforts is included in the following report. The report was reviewed by the STECF spring plenary during 13-17 April 201

    Size-dependent survival of European hake juveniles in the Mediterranean Sea.

    No full text
    Most studies on European hake focus on the recruitment process and nursery areas, whereas the information is comparatively limited on the ecology of the juvenile stage (ca. second year of life)—the one most exploited by the Mediterranean trawl fisheries. Using information of the MEDITS programme, we provide a spatial and temporal assessment of the influence of body size and growth on hake survival from recruits (age 0) to juveniles (age 1), along with the impact of surface temperature and chlorophyll variability. At a biogeographic scale, size-dependent survival is supported, with areas with higher mean length of recruits and juveniles yielding higher survival. A similar pattern was observed at interannual level in some western Mediterranean areas, also mediated by a density-dependent effect on growth. However, the most recurrent inter-annual pattern was a negative effect of size on survival, which could be attributed to potential ontogenetic changes in catchability and underrepresentation of intra-annual recruitment pulses that are seasonally inaccessible to the MEDITS sur- vey. Results also evidence that survival in the Alboran and Adriatic seas is dependent on the primary production variability, and that Corsica and Sardinia could be potential feeding grounds receiving juveniles from neighbouring areas. The present study reveals the importance of size- and growth-dependent survival in the juvenile stage of European hake in the Mediter- ranean Sea

    Environmentally driven synchronies of Mediterranean cephalopod populations

    No full text
    The Mediterranean Sea is characterized by large scale gradients of temperature, productivity and salinity, in addition to pronounced mesoscale differences. Such a heterogeneous system is expected to shape the population dynamics of marine species. On the other hand, prevailing environmental and climatic conditions at whole basin scale may force spatially distant populations to fluctuate in synchrony. Cephalopods are excellent case studies to test these hypotheses owing to their high sensitivity to environmental conditions. Data of two cephalopod species with contrasting life histories (benthic octopus vs nectobenthic squid), obtained from scientific surveys carried out throughout the Mediterranean during the last 20 years were analyzed. The objectives of this study and the methods used to achieve them (in parentheses) were: (i) to investigate synchronies in spatially separated populations (decorrelation analysis); (ii) detect underlying common abundance trends over distant regions (dynamic factor analysis, DFA); and (iii) analyse putative influences of key environmental drivers such as productivity and sea surface temperature on the population dynamics at regional scale (general linear models, GLM). In accordance with their contrasting spatial mobility, the distance from where synchrony could no longer be detected (decorrelation scale) was higher in squid than in octopus (349 vs 217 km); for comparison, the maximum distance between locations was 2620 km. The DFA revealed a general increasing trend in the abundance of both species in most areas, which agrees with the already reported worldwide proliferation of cephalopods. DFA results also showed that population dynamics are more similar in the eastern than in the western Mediterranean basin. According to the GLM models, cephalopod populations were negatively affected by productivity, which would be explained by an increase of competition and predation by fishes. While warmer years coincided with declining octopus numbers, areas of high sea surface temperature showed higher densities of squid. Our results are relevant for regional fisheries management and demonstrate that the regionalisation objectives envisaged under the new Common Fishery Policy may not be adequate for Mediterranean cephalopod stocks.Versión del edito

    SEAwise Report on improved predictive models of growth, production and stock quality.

    No full text
    The SEAwise project works to deliver a fully operational tool that will allow fishers, managers, and policy makers to easily apply Ecosystem Based Fisheries Management (EBFM) in their fisheries and understanding how ecological drivers impact stock productivity through growth, condition and maturity is essential to this proces. In this SEAwise report, we present the predictive models of fish growth, condition and maturity obtained so far in each of the four regional case studies.The biological processes (fish growth, condition and maturity) were studied in terms of body size (weight-at-age, length-at-age), condition factor, otolith increments and size at first maturity. Underlying data were available at different levels, ranging from individual fish, to sampling haul or stock level. Accordingly, the methods employed varied across case studies to adapt to the specific features of the process under study and the available data.The methodology encompassed statistical models (linear models, generalised additive models, mixed models, Bayesian nested hierarchical models, changepoint models), otolith growth increment analyses and mechanistic models (DEB-IBM model coupled to the environment and mizer model). Some of these models were focused on detecting overall trends, including potential changepoints along the time series or identification of the main intrinsic factors. Other models explored the impact of ecological drivers such as temperature, salinity, food availability or density dependence.In the Baltic Sea, two regimes were identified in the weight-at-age time series of herring in the Gulf of Riga (1961-1988 and 1989-2020). During the first period the main driver of the individual annual growth of the fish was the abundance of the copepod L. macrurus macrurus, while the abundance of the adult stages of E. affinis affinis was the dominating explanatory variable affecting herring growth during the second period. Neither SSB nor summer temperature during the main feeding period were significant drivers of the individual growth in the two distinct ecosystem regimes.In the Mediterranean Sea, the analysis of the impact of the environmental variables on biological parameters like size at first maturity, condition factor and growth in South Adriatic Sea and North-West Ionian Sea showed some significant effects in relation to the different species/area. In most of the cases, the environmental driver was bottom temperature, although some relationships with bottom salinity and primary production were also found. The model outcomes suggested that temperatures prevailing in deeper waters were the most significant factor affecting gonad maturity of hakes, while those in the shallow zone had the main impact on the L50 of red mullets. Condition factor of hake and red mullet in the Eastern Ionian Sea were affected not only by temperature, but also by zooplankton abundance.In the North Sea, mediated length-based growth models, linear mixed models and state-space linear mixed models were applied to four gadoids, two flatfishes and one pelagic stock and their performances were assessed in terms of model fit and predictive capability. For the mediated length-based growth model approach, the best model differed across stocks, but density dependent mediation effects were significant for five out of the seven stocks. Regarding the linear mixed models, the two types of models and the different penalisation procedures led to different models across stocks. Among the additional ecological variables, surface temperature was the most frequently included in the final model, closely followed closely by SSB and to a lesser extent by NAO. Detailed otolith increment analysis was used in the development of multidecadal biochronologies of average annual growth of sole in the North Sea and in the Irish Sea. In the North Sea, the best extrinsic model of sole growth included sea bottom temperature, fishing mortality at age, and stock biomass at maturity stage, and their interactions with age and maturity stage, while in the Irish Sea, the best extrinsic model included sea bottom temperature and fishing mortality at maturity stage and its interaction with maturity stage. These results confirmed the expected positive effect of temperature on adult growth. However, in the North Sea, temperature showed unexpected negative effect on juvenile growth, which might be linked to changes in food availability and/or intraspecific competition and need to be further studied. The mizer model (package for size-spectrum ecological modelling) with environmental forcing was used to study whether warming in the North Sea is responsible for the failure of the cod stock. The simulated fish community response when recruitment and carrying capacity depended on surface temperature fitted better with the assessment data than when the environment was fixed. However, the qualitative differences remain, suggesting that temperature effects were not the main cause of the model-assessment disparity.In the Western Waters, the mediated length-based growth models developed for the North Sea case study were applied to 14 stocks in the Celtic Sea. The best model differed across stocks, but again SSB mediation was significant for most of the stocks. From visual inspection of the plots, however, it was noted that the raw data from certain stock objects showed a reduced growth compared to the model fits, requiring further analyses. The analysis on biological measurements of individuals collected at fish markets, observers at sea or during scientific cruises allowed to study temporal variations in body size and condition factor of benthic, pelagic and demersal species in the Celtic Sea and the Bay of Biscay. The linear models indicated a significant negative monotonic relationship of sizes at all ages for anchovy and pilchard, but variations in size at age were less clear and significant for benthic and demersal species. In contrast, the results of the body condition indices showed a moderate but significant decrease for all the studied 19 species over time. The in-depth analysis for anchovy in the Bay of Biscay based on research surveys confirmed the decline in the length and weight of anchovy in the Bay of Biscay and pointed to a decline in body condition toward slender body shapes. Detected associations between temperature and size became more apparent for adult age classes than for juveniles, whereas the association between anchovy size and the biomass of spawners was more important for juvenile than for adult age classes. Associations between anchovy size and chlorophyll-a concentration were in general weak. Finally, the DEB-IBM model coupled to the environment that is under development for the two main seabass stocks of the North East Atlantic will provide further insights on how growth, condition and maturation can affect the future dynamics and productivity of these stocks.Read more about the project at www.seawiseproject.org</p
    corecore